|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import cv2 |
|
import json |
|
import paddle |
|
|
|
from ppocr.data import create_operators, transform |
|
from ppocr.modeling.architectures import build_model |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.save_load import load_model |
|
from ppocr.utils.utility import get_image_file_list |
|
import tools.program as program |
|
|
|
|
|
def draw_det_res(dt_boxes, config, img, img_name, save_path): |
|
if len(dt_boxes) > 0: |
|
import cv2 |
|
src_im = img |
|
for box in dt_boxes: |
|
box = np.array(box).astype(np.int32).reshape((-1, 1, 2)) |
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) |
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
save_path = os.path.join(save_path, os.path.basename(img_name)) |
|
cv2.imwrite(save_path, src_im) |
|
logger.info("The detected Image saved in {}".format(save_path)) |
|
|
|
|
|
@paddle.no_grad() |
|
def main(): |
|
global_config = config['Global'] |
|
|
|
|
|
model = build_model(config['Architecture']) |
|
|
|
load_model(config, model) |
|
|
|
post_process_class = build_post_process(config['PostProcess']) |
|
|
|
|
|
transforms = [] |
|
for op in config['Eval']['dataset']['transforms']: |
|
op_name = list(op)[0] |
|
if 'Label' in op_name: |
|
continue |
|
elif op_name == 'KeepKeys': |
|
op[op_name]['keep_keys'] = ['image', 'shape'] |
|
transforms.append(op) |
|
|
|
ops = create_operators(transforms, global_config) |
|
|
|
save_res_path = config['Global']['save_res_path'] |
|
if not os.path.exists(os.path.dirname(save_res_path)): |
|
os.makedirs(os.path.dirname(save_res_path)) |
|
|
|
model.eval() |
|
with open(save_res_path, "wb") as fout: |
|
for file in get_image_file_list(config['Global']['infer_img']): |
|
logger.info("infer_img: {}".format(file)) |
|
with open(file, 'rb') as f: |
|
img = f.read() |
|
data = {'image': img} |
|
batch = transform(data, ops) |
|
|
|
images = np.expand_dims(batch[0], axis=0) |
|
shape_list = np.expand_dims(batch[1], axis=0) |
|
images = paddle.to_tensor(images) |
|
preds = model(images) |
|
post_result = post_process_class(preds, shape_list) |
|
|
|
src_img = cv2.imread(file) |
|
|
|
dt_boxes_json = [] |
|
|
|
if isinstance(post_result, dict): |
|
det_box_json = {} |
|
for k in post_result.keys(): |
|
boxes = post_result[k][0]['points'] |
|
dt_boxes_list = [] |
|
for box in boxes: |
|
tmp_json = {"transcription": ""} |
|
tmp_json['points'] = np.array(box).tolist() |
|
dt_boxes_list.append(tmp_json) |
|
det_box_json[k] = dt_boxes_list |
|
save_det_path = os.path.dirname(config['Global'][ |
|
'save_res_path']) + "/det_results_{}/".format(k) |
|
draw_det_res(boxes, config, src_img, file, save_det_path) |
|
else: |
|
boxes = post_result[0]['points'] |
|
dt_boxes_json = [] |
|
|
|
for box in boxes: |
|
tmp_json = {"transcription": ""} |
|
tmp_json['points'] = np.array(box).tolist() |
|
dt_boxes_json.append(tmp_json) |
|
save_det_path = os.path.dirname(config['Global'][ |
|
'save_res_path']) + "/det_results/" |
|
draw_det_res(boxes, config, src_img, file, save_det_path) |
|
otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n" |
|
fout.write(otstr.encode()) |
|
|
|
logger.info("success!") |
|
|
|
|
|
if __name__ == '__main__': |
|
config, device, logger, vdl_writer = program.preprocess() |
|
main() |
|
|