|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
|
|
import os |
|
import sys |
|
import json |
|
from PIL import Image |
|
import cv2 |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.insert(0, __dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import paddle |
|
|
|
from ppocr.data import create_operators, transform |
|
from ppocr.modeling.architectures import build_model |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.save_load import load_model |
|
from ppocr.utils.utility import get_image_file_list |
|
import tools.program as program |
|
|
|
|
|
def main(): |
|
global_config = config['Global'] |
|
|
|
|
|
post_process_class = build_post_process(config['PostProcess'], |
|
global_config) |
|
|
|
|
|
config['Architecture']["Transform"]['infer_mode'] = True |
|
|
|
model = build_model(config['Architecture']) |
|
|
|
load_model(config, model) |
|
|
|
|
|
transforms = [] |
|
for op in config['Eval']['dataset']['transforms']: |
|
op_name = list(op)[0] |
|
if 'Label' in op_name: |
|
continue |
|
elif op_name in ['SRResize']: |
|
op[op_name]['infer_mode'] = True |
|
elif op_name == 'KeepKeys': |
|
op[op_name]['keep_keys'] = ['img_lr'] |
|
transforms.append(op) |
|
global_config['infer_mode'] = True |
|
ops = create_operators(transforms, global_config) |
|
|
|
save_visual_path = config['Global'].get('save_visual', "infer_result/") |
|
if not os.path.exists(os.path.dirname(save_visual_path)): |
|
os.makedirs(os.path.dirname(save_visual_path)) |
|
|
|
model.eval() |
|
for file in get_image_file_list(config['Global']['infer_img']): |
|
logger.info("infer_img: {}".format(file)) |
|
img = Image.open(file).convert("RGB") |
|
data = {'image_lr': img} |
|
batch = transform(data, ops) |
|
images = np.expand_dims(batch[0], axis=0) |
|
images = paddle.to_tensor(images) |
|
|
|
preds = model(images) |
|
sr_img = preds["sr_img"][0] |
|
lr_img = preds["lr_img"][0] |
|
fm_sr = (sr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) |
|
fm_lr = (lr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) |
|
img_name_pure = os.path.split(file)[-1] |
|
cv2.imwrite("{}/sr_{}".format(save_visual_path, img_name_pure), |
|
fm_sr[:, :, ::-1]) |
|
logger.info("The visualized image saved in infer_result/sr_{}".format( |
|
img_name_pure)) |
|
|
|
logger.info("success!") |
|
|
|
|
|
if __name__ == '__main__': |
|
config, device, logger, vdl_writer = program.preprocess() |
|
main() |
|
|