|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
|
|
import os |
|
import sys |
|
import json |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) |
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' |
|
|
|
import paddle |
|
from paddle.jit import to_static |
|
|
|
from ppocr.data import create_operators, transform |
|
from ppocr.modeling.architectures import build_model |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.utils.save_load import load_model |
|
from ppocr.utils.utility import get_image_file_list |
|
from ppocr.utils.visual import draw_rectangle |
|
from tools.infer.utility import draw_boxes |
|
import tools.program as program |
|
import cv2 |
|
|
|
|
|
@paddle.no_grad() |
|
def main(config, device, logger, vdl_writer): |
|
global_config = config['Global'] |
|
|
|
|
|
post_process_class = build_post_process(config['PostProcess'], |
|
global_config) |
|
|
|
|
|
if hasattr(post_process_class, 'character'): |
|
config['Architecture']["Head"]['out_channels'] = len( |
|
getattr(post_process_class, 'character')) |
|
|
|
model = build_model(config['Architecture']) |
|
algorithm = config['Architecture']['algorithm'] |
|
|
|
load_model(config, model) |
|
|
|
|
|
transforms = [] |
|
for op in config['Eval']['dataset']['transforms']: |
|
op_name = list(op)[0] |
|
if 'Encode' in op_name: |
|
continue |
|
if op_name == 'KeepKeys': |
|
op[op_name]['keep_keys'] = ['image', 'shape'] |
|
transforms.append(op) |
|
|
|
global_config['infer_mode'] = True |
|
ops = create_operators(transforms, global_config) |
|
|
|
save_res_path = config['Global']['save_res_path'] |
|
os.makedirs(save_res_path, exist_ok=True) |
|
|
|
model.eval() |
|
with open( |
|
os.path.join(save_res_path, 'infer.txt'), mode='w', |
|
encoding='utf-8') as f_w: |
|
for file in get_image_file_list(config['Global']['infer_img']): |
|
logger.info("infer_img: {}".format(file)) |
|
with open(file, 'rb') as f: |
|
img = f.read() |
|
data = {'image': img} |
|
batch = transform(data, ops) |
|
images = np.expand_dims(batch[0], axis=0) |
|
shape_list = np.expand_dims(batch[1], axis=0) |
|
|
|
images = paddle.to_tensor(images) |
|
preds = model(images) |
|
post_result = post_process_class(preds, [shape_list]) |
|
|
|
structure_str_list = post_result['structure_batch_list'][0] |
|
bbox_list = post_result['bbox_batch_list'][0] |
|
structure_str_list = structure_str_list[0] |
|
structure_str_list = [ |
|
'<html>', '<body>', '<table>' |
|
] + structure_str_list + ['</table>', '</body>', '</html>'] |
|
bbox_list_str = json.dumps(bbox_list.tolist()) |
|
|
|
logger.info("result: {}, {}".format(structure_str_list, |
|
bbox_list_str)) |
|
f_w.write("result: {}, {}\n".format(structure_str_list, |
|
bbox_list_str)) |
|
|
|
if len(bbox_list) > 0 and len(bbox_list[0]) == 4: |
|
img = draw_rectangle(file, bbox_list) |
|
else: |
|
img = draw_boxes(cv2.imread(file), bbox_list) |
|
cv2.imwrite( |
|
os.path.join(save_res_path, os.path.basename(file)), img) |
|
logger.info('save result to {}'.format(save_res_path)) |
|
logger.info("success!") |
|
|
|
|
|
if __name__ == '__main__': |
|
config, device, logger, vdl_writer = program.preprocess() |
|
main(config, device, logger, vdl_writer) |
|
|