# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import copy import logging import numpy as np import time import tools.infer.predict_rec as predict_rec import tools.infer.predict_det as predict_det import tools.infer.utility as utility from tools.infer.predict_system import sorted_boxes from ppocr.utils.utility import get_image_file_list, check_and_read from ppocr.utils.logging import get_logger from ppstructure.table.matcher import TableMatch from ppstructure.table.table_master_match import TableMasterMatcher from ppstructure.utility import parse_args import ppstructure.table.predict_structure as predict_strture logger = get_logger() def expand(pix, det_box, shape): x0, y0, x1, y1 = det_box # print(shape) h, w, c = shape tmp_x0 = x0 - pix tmp_x1 = x1 + pix tmp_y0 = y0 - pix tmp_y1 = y1 + pix x0_ = tmp_x0 if tmp_x0 >= 0 else 0 x1_ = tmp_x1 if tmp_x1 <= w else w y0_ = tmp_y0 if tmp_y0 >= 0 else 0 y1_ = tmp_y1 if tmp_y1 <= h else h return x0_, y0_, x1_, y1_ class TableSystem(object): def __init__(self, args, text_detector=None, text_recognizer=None): self.args = args if not args.show_log: logger.setLevel(logging.INFO) benchmark_tmp = False if args.benchmark: benchmark_tmp = args.benchmark args.benchmark = False self.text_detector = predict_det.TextDetector(copy.deepcopy( args)) if text_detector is None else text_detector self.text_recognizer = predict_rec.TextRecognizer(copy.deepcopy( args)) if text_recognizer is None else text_recognizer if benchmark_tmp: args.benchmark = True self.table_structurer = predict_strture.TableStructurer(args) if args.table_algorithm in ['TableMaster']: self.match = TableMasterMatcher() else: self.match = TableMatch(filter_ocr_result=True) self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( args, 'table', logger) def __call__(self, img, return_ocr_result_in_table=False): result = dict() time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0} start = time.time() structure_res, elapse = self._structure(copy.deepcopy(img)) result['cell_bbox'] = structure_res[1].tolist() time_dict['table'] = elapse dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr( copy.deepcopy(img)) time_dict['det'] = det_elapse time_dict['rec'] = rec_elapse if return_ocr_result_in_table: result['boxes'] = dt_boxes #[x.tolist() for x in dt_boxes] result['rec_res'] = rec_res tic = time.time() pred_html = self.match(structure_res, dt_boxes, rec_res) toc = time.time() time_dict['match'] = toc - tic result['html'] = pred_html end = time.time() time_dict['all'] = end - start return result, time_dict def _structure(self, img): structure_res, elapse = self.table_structurer(copy.deepcopy(img)) return structure_res, elapse def _ocr(self, img): h, w = img.shape[:2] dt_boxes, det_elapse = self.text_detector(copy.deepcopy(img)) dt_boxes = sorted_boxes(dt_boxes) r_boxes = [] for box in dt_boxes: x_min = max(0, box[:, 0].min() - 1) x_max = min(w, box[:, 0].max() + 1) y_min = max(0, box[:, 1].min() - 1) y_max = min(h, box[:, 1].max() + 1) box = [x_min, y_min, x_max, y_max] r_boxes.append(box) dt_boxes = np.array(r_boxes) logger.debug("dt_boxes num : {}, elapse : {}".format( len(dt_boxes), det_elapse)) if dt_boxes is None: return None, None img_crop_list = [] for i in range(len(dt_boxes)): det_box = dt_boxes[i] x0, y0, x1, y1 = expand(2, det_box, img.shape) text_rect = img[int(y0):int(y1), int(x0):int(x1), :] img_crop_list.append(text_rect) rec_res, rec_elapse = self.text_recognizer(img_crop_list) logger.debug("rec_res num : {}, elapse : {}".format( len(rec_res), rec_elapse)) return dt_boxes, rec_res, det_elapse, rec_elapse def to_excel(html_table, excel_path): from tablepyxl import tablepyxl tablepyxl.document_to_xl(html_table, excel_path) def main(args): image_file_list = get_image_file_list(args.image_dir) image_file_list = image_file_list[args.process_id::args.total_process_num] os.makedirs(args.output, exist_ok=True) table_sys = TableSystem(args) img_num = len(image_file_list) f_html = open( os.path.join(args.output, 'show.html'), mode='w', encoding='utf-8') f_html.write('\n
\n') f_html.write('img name\n') f_html.write(' | ori image | ') f_html.write('table html | ') f_html.write('cell box | ') f_html.write("
{os.path.basename(image_file)} \n') f_html.write(f' | \n') f_html.write(' | \n') f_html.write(" |