import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal_more_specs_grad_boosted", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(pclass,sex,age,sibsp,parch,embarked,fare_per_customer,embarked_remapped,cabin_remapped): input_list = [] input_list.append(pclass) input_list.append(sex) input_list.append(age) input_list.append(sibsp) input_list.append(parch) input_list.append(embarked) input_list.append(fare_per_customer) input_list.append(embarked_remapped) input_list.append(cabin_remapped) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. demo = gr.Interface( fn=titanic, title="Titanic Predictive Analytics", description="Predict survivals.", allow_flagging="never", inputs=[ gr.inputs.Number(default=1.0, label="pclass"), gr.inputs.Number(default=1.0, label="gender(male=0, female=1)"), gr.inputs.Number(default=1.0, label="age"), gr.inputs.Number(default=1.0, label="sibsp"), gr.inputs.Number(default=1.0, label="parch"), gr.inputs.Number(default=1.0, label="embarked(C=1,S=2,Q=3)"), gr.inputs.Number(default=1.0, label="fare_per_customer"), gr.inputs.Number(default=1.0, label="cabin_remapped(if the passanger has one cabin =1, else =0)"), ], outputs=gr.Image(type="pil")) demo.launch()