File size: 1,545 Bytes
8062140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf94357
 
 
8062140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f3c4
8062140
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np
import folium
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure

from functions import decode_features, get_model

def greet(name):

    project = hopsworks.login()
    #api = project.get_dataset_api()
    fs = project.get_feature_store()
    feature_view = fs.get_feature_view(
        name = 'weather_fv',
        version = 1
    )

   # start_time = 1672614000000
    start_date = datetime.now() - timedelta(days=1)
    start_time = int(start_date.timestamp()) * 1000


    X = feature_view.get_batch_data(start_time=start_time)
    latest_date_unix = str(X.date.values[0])[:10]
    latest_date = time.ctime(int(latest_date_unix))

    X = X.drop(columns=["datetime"]).fillna(0)


    model = get_model(project=project,
                      model_name="temp_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max")

    preds = model.predict(X)

   # cities = [city_tuple[0] for city_tuple in cities_coords.keys()]

    next_day_date = datetime.today() + timedelta(days=1)
    next_day = next_day_date.strftime ('%d/%m/%Y')
    str1 = ""


    for x in range(8):
      if(x != 0):
         str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature:      " + preds+"\n"
    
    print(str1)
    return str1


demo = gr.Interface(fn=greet, inputs="text", outputs="text")


    
if __name__ == "__main__":
    demo.launch()