Spaces:
Runtime error
Runtime error
File size: 4,170 Bytes
8062140 59fcb36 8062140 f86b580 38d6ec5 d47d510 9d7e90c 8062140 ac158aa 38d6ec5 59fcb36 ac158aa 38d6ec5 59fcb36 38d6ec5 59fcb36 38d6ec5 1f86947 59fcb36 4a8dd38 38d6ec5 59fcb36 1f86947 82d1a2a 1f86947 38d6ec5 59fcb36 1f86947 ac158aa 38d6ec5 ac158aa 8062140 9d7e90c 1f86947 ada5e88 9d7e90c a612c2d 8062140 a612c2d 62cfbd8 8062140 d47d510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np
import folium
import sklearn.preprocessing as proc
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure
from functions import decode_features, get_weather_data, get_weather_df, get_weather_json_quick
##################
def greet(total_pred_days):
str1 = ""
if(total_pred_days == ""):
return "Empty input"
count = int(total_pred_days)
if count > 14:
str1 += "Warning: 14 days at most. " + '\n'
count = 14
if count <0:
str1 = "Invalid input."
return str1
count = count + 1
X = pd.DataFrame()
for i in range(count+1):
# Get, rename column and rescale
next_day_date = datetime.today() + timedelta(days=i)
next_day = next_day_date.strftime ('%Y-%m-%d')
json = get_weather_json_quick(next_day)
temp = get_weather_data(json)
X = X.append(temp, ignore_index=True)
# X reshape
X.drop('preciptype', inplace = True, axis = 1)
X.drop('severerisk', inplace = True, axis = 1)
X.drop('stations', inplace = True, axis = 1)
X.drop('sunrise', inplace = True, axis = 1)
X.drop('sunset', inplace = True, axis = 1)
X.drop('moonphase', inplace = True, axis = 1)
X.drop('description', inplace = True, axis = 1)
X.drop('icon', inplace = True, axis = 1)
X = X.drop(columns=["sunriseEpoch", "sunsetEpoch", "source", "datetimeEpoch"]).fillna(0)
X = X.rename(columns={'pressure':'sealevelpressure'})
# Merge X and query
#Y = X.append(Q, ignore_index=True)
# Data scaling
X = X.drop(columns = ['conditions', "datetime", "temp", "tempmax", "tempmin"])
category_cols = ['conditions']
cat_std_cols = ['feelslikemax','feelslikemin','feelslike','dew','humidity','precip','precipprob','precipcover','snow','snowdepth','windgust','windspeed','winddir','sealevelpressure','cloudcover','visibility','solarradiation','solarenergy','uvindex']
scaler_std = proc.StandardScaler()
X.insert(19,"conditions",0)
X.insert(0,"name",0)
X[cat_std_cols] = scaler_std.fit_transform(X[cat_std_cols])
X[category_cols] = scaler_std.fit_transform(X[category_cols])
# Predict
preds = model.predict(X[0:count])
preds1= model1.predict(X[0:count])
preds2= model2.predict(X[0:count])
for x in range(count):
if (x != 0):
str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature: " +str(float(preds[len(preds) - count + x]))+ "\npredicted max temperature: " +str(float(preds1[len(preds1) - count + x]))+ "\npredicted min temperature: " +str(float(preds2[len(preds2) - count + x]))+"\n"
return str1
#######################################################
# Preparations
project = hopsworks.login()
mr=project.get_model_registry()
# fs = project.get_feature_store()
# weather_fg = fs.get_or_create_feature_group(
# name = 'weather_fg',
# version = 1
# )
#
# query = weather_fg.select_all()
# Q = query.read()
model = mr.get_model("temp_model_new", version=1)
model_dir=model.download()
model1 = mr.get_model("tempmax_model_new", version=1)
model_dir1=model1.download()
model2 = mr.get_model("tempmin_model_new", version=1)
model_dir2=model2.download()
model = joblib.load(model_dir + "/model_temp_new.pkl")
model1 = joblib.load(model_dir1 + "/model_tempmax_new.pkl")
model2 = joblib.load(model_dir2+ "/model_tempmin_new.pkl")
########################################################
# Gradio Interface
#demo = gr.Interface(fn=greet, inputs = "text", outputs="text")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
days = gr.Slider(
label="How many days do you want to predict the temperature of? ", value=1, minimum=1, maximum=15, step=1
)
with gr.Column():
output = gr.Textbox(
label="Predicted results: "
)
days.change(greet, days, output)
if __name__ == "__main__":
demo.launch()
|