Spaces:
Runtime error
Runtime error
Campfireman
commited on
Commit
•
82326ea
1
Parent(s):
c7ce2ca
Update functions.py
Browse files- functions.py +44 -106
functions.py
CHANGED
@@ -3,7 +3,6 @@ import requests
|
|
3 |
import os
|
4 |
import joblib
|
5 |
import pandas as pd
|
6 |
-
|
7 |
import json
|
8 |
|
9 |
|
@@ -11,9 +10,9 @@ def decode_features(df, feature_view):
|
|
11 |
"""Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions"""
|
12 |
df_res = df.copy()
|
13 |
|
|
|
14 |
import inspect
|
15 |
|
16 |
-
|
17 |
td_transformation_functions = feature_view._batch_scoring_server._transformation_functions
|
18 |
|
19 |
res = {}
|
@@ -25,7 +24,6 @@ def decode_features(df, feature_view):
|
|
25 |
if td_transformation_function.name == "min_max_scaler":
|
26 |
df_res[feature_name] = df_res[feature_name].map(
|
27 |
lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"])
|
28 |
-
|
29 |
elif td_transformation_function.name == "standard_scaler":
|
30 |
df_res[feature_name] = df_res[feature_name].map(
|
31 |
lambda x: x * param_dict['std_dev'] + param_dict["mean"])
|
@@ -36,115 +34,53 @@ def decode_features(df, feature_view):
|
|
36 |
lambda x: dictionary_[x])
|
37 |
return df_res
|
38 |
|
39 |
-
|
40 |
-
def get_model1(project, model_name, evaluation_metric, sort_metrics_by):
|
41 |
-
"""Retrieve desired model or download it from the Hopsworks Model Registry.
|
42 |
-
In second case, it will be physically downloaded to this directory"""
|
43 |
-
TARGET_FILE = "model_tempmax.pkl"
|
44 |
-
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \
|
45 |
-
in os.walk('.') for filename in filenames if filename == TARGET_FILE]
|
46 |
-
|
47 |
-
if list_of_files:
|
48 |
-
model_path = list_of_files[0]
|
49 |
-
model = joblib.load(model_path)
|
50 |
-
else:
|
51 |
-
if not os.path.exists(TARGET_FILE):
|
52 |
-
mr = project.get_model_registry()
|
53 |
-
# get best model based on custom metrics
|
54 |
-
model = mr.get_best_model(model_name,
|
55 |
-
evaluation_metric,
|
56 |
-
sort_metrics_by)
|
57 |
-
model_dir = model.download()
|
58 |
-
model = joblib.load(model_dir + "/model_tempmax.pkl")
|
59 |
-
|
60 |
-
return model
|
61 |
-
def get_model2(project, model_name, evaluation_metric, sort_metrics_by):
|
62 |
-
"""Retrieve desired model or download it from the Hopsworks Model Registry.
|
63 |
-
In second case, it will be physically downloaded to this directory"""
|
64 |
-
TARGET_FILE = "model_tempmin.pkl"
|
65 |
-
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \
|
66 |
-
in os.walk('.') for filename in filenames if filename == TARGET_FILE]
|
67 |
-
|
68 |
-
if list_of_files:
|
69 |
-
model_path = list_of_files[0]
|
70 |
-
model = joblib.load(model_path)
|
71 |
-
else:
|
72 |
-
if not os.path.exists(TARGET_FILE):
|
73 |
-
mr = project.get_model_registry()
|
74 |
-
# get best model based on custom metrics
|
75 |
-
model = mr.get_best_model(model_name,
|
76 |
-
evaluation_metric,
|
77 |
-
sort_metrics_by)
|
78 |
-
model_dir = model.download()
|
79 |
-
model = joblib.load(model_dir + "/model_tempmin.pkl")
|
80 |
-
|
81 |
-
return model
|
82 |
-
def get_model(project, model_name, evaluation_metric, sort_metrics_by):
|
83 |
-
"""Retrieve desired model or download it from the Hopsworks Model Registry.
|
84 |
-
In second case, it will be physically downloaded to this directory"""
|
85 |
-
TARGET_FILE = "model_temp.pkl"
|
86 |
-
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \
|
87 |
-
in os.walk('.') for filename in filenames if filename == TARGET_FILE]
|
88 |
-
|
89 |
-
if list_of_files:
|
90 |
-
model_path = list_of_files[0]
|
91 |
-
model = joblib.load(model_path)
|
92 |
-
else:
|
93 |
-
if not os.path.exists(TARGET_FILE):
|
94 |
-
mr = project.get_model_registry()
|
95 |
-
# get best model based on custom metrics
|
96 |
-
model = mr.get_best_model(model_name,
|
97 |
-
evaluation_metric,
|
98 |
-
sort_metrics_by)
|
99 |
-
model_dir = model.download()
|
100 |
-
model = joblib.load(model_dir + "/model_temp.pkl")
|
101 |
-
|
102 |
-
return model
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
def get_weather_json(date, WEATHER_API_KEY):
|
107 |
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
|
108 |
|
|
|
|
|
109 |
|
110 |
-
def
|
111 |
-
|
112 |
-
json = get_weather_json(date, WEATHER_API_KEY)
|
113 |
-
data = json['days'][0]
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
]
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
def get_weather_df(data):
|
145 |
col_names = [
|
146 |
-
'
|
147 |
-
'
|
148 |
'tempmax',
|
149 |
'tempmin',
|
150 |
'temp',
|
@@ -161,7 +97,7 @@ def get_weather_df(data):
|
|
161 |
'windgust',
|
162 |
'windspeed',
|
163 |
'winddir',
|
164 |
-
'
|
165 |
'cloudcover',
|
166 |
'visibility',
|
167 |
'solarradiation',
|
@@ -170,12 +106,14 @@ def get_weather_df(data):
|
|
170 |
'conditions'
|
171 |
]
|
172 |
|
|
|
|
|
173 |
new_data = pd.DataFrame(
|
174 |
data,
|
175 |
columns=col_names
|
176 |
)
|
177 |
-
new_data.
|
178 |
-
|
179 |
return new_data
|
180 |
|
181 |
def timestamp_2_time1(x):
|
|
|
3 |
import os
|
4 |
import joblib
|
5 |
import pandas as pd
|
|
|
6 |
import json
|
7 |
|
8 |
|
|
|
10 |
"""Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions"""
|
11 |
df_res = df.copy()
|
12 |
|
13 |
+
print(df_res)
|
14 |
import inspect
|
15 |
|
|
|
16 |
td_transformation_functions = feature_view._batch_scoring_server._transformation_functions
|
17 |
|
18 |
res = {}
|
|
|
24 |
if td_transformation_function.name == "min_max_scaler":
|
25 |
df_res[feature_name] = df_res[feature_name].map(
|
26 |
lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"])
|
|
|
27 |
elif td_transformation_function.name == "standard_scaler":
|
28 |
df_res[feature_name] = df_res[feature_name].map(
|
29 |
lambda x: x * param_dict['std_dev'] + param_dict["mean"])
|
|
|
34 |
lambda x: dictionary_[x])
|
35 |
return df_res
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def get_weather_json(date, WEATHER_API_KEY):
|
38 |
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
|
39 |
|
40 |
+
def get_weather_csv():
|
41 |
+
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/shanghai?unitGroup=metric&include=days&key=FYYH5HKD9558HBXD2D6KWXDGH&contentType=csv').csv()
|
42 |
|
43 |
+
def get_weather_json_quick(date):
|
44 |
+
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/shanghai/{date}?unitGroup=metric&include=days&key=FYYH5HKD9558HBXD2D6KWXDGH&contentType=json').json()
|
|
|
|
|
45 |
|
46 |
+
|
47 |
+
def get_weather_data(json):
|
48 |
+
#WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
|
49 |
+
|
50 |
+
#csv = get_weather_csv()
|
51 |
+
data = json['days'][0]
|
52 |
+
print("data parsed sccessfully")
|
53 |
+
#return [
|
54 |
+
# #json['address'].capitalize(),
|
55 |
+
# data['datetime'],
|
56 |
+
# data['feelslikemax'],
|
57 |
+
# data['feelslikemin'],
|
58 |
+
# data['feelslike'],
|
59 |
+
# data['dew'],
|
60 |
+
# data['humidity'],
|
61 |
+
# data['precip'],
|
62 |
+
# data['precipprob'],
|
63 |
+
# data['precipcover'],
|
64 |
+
# data['snow'],
|
65 |
+
# data['snowdepth'],
|
66 |
+
# data['windgust'],
|
67 |
+
# data['windspeed'],
|
68 |
+
# data['winddir'],
|
69 |
+
# data['pressure'],
|
70 |
+
# data['cloudcover'],
|
71 |
+
# data['visibility'],
|
72 |
+
# data['solarradiation'],
|
73 |
+
# data['solarenergy'],
|
74 |
+
# data['uvindex'],
|
75 |
+
# data['conditions']
|
76 |
+
#]
|
77 |
+
return data
|
78 |
|
79 |
|
80 |
def get_weather_df(data):
|
81 |
col_names = [
|
82 |
+
'name',
|
83 |
+
'datetime',
|
84 |
'tempmax',
|
85 |
'tempmin',
|
86 |
'temp',
|
|
|
97 |
'windgust',
|
98 |
'windspeed',
|
99 |
'winddir',
|
100 |
+
'sealevelpressure',
|
101 |
'cloudcover',
|
102 |
'visibility',
|
103 |
'solarradiation',
|
|
|
106 |
'conditions'
|
107 |
]
|
108 |
|
109 |
+
|
110 |
+
|
111 |
new_data = pd.DataFrame(
|
112 |
data,
|
113 |
columns=col_names
|
114 |
)
|
115 |
+
new_data.datetime = new_data.datetime.apply(timestamp_2_time1)
|
116 |
+
#new_data.rename(columes={'pressure':'sealevelpressure'})
|
117 |
return new_data
|
118 |
|
119 |
def timestamp_2_time1(x):
|