Spaces:
Runtime error
Runtime error
Campfireman
commited on
Commit
•
9e5f3ef
1
Parent(s):
b67094f
Update functions.py
Browse files- functions.py +86 -0
functions.py
CHANGED
@@ -101,3 +101,89 @@ def get_model(project, model_name, evaluation_metric, sort_metrics_by):
|
|
101 |
|
102 |
return model
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
return model
|
103 |
|
104 |
+
|
105 |
+
|
106 |
+
def get_weather_json(date, WEATHER_API_KEY):
|
107 |
+
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
|
108 |
+
|
109 |
+
|
110 |
+
def get_weather_data(date):
|
111 |
+
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
|
112 |
+
json = get_weather_json(date, WEATHER_API_KEY)
|
113 |
+
data = json['days'][0]
|
114 |
+
|
115 |
+
return [
|
116 |
+
json['address'].capitalize(),
|
117 |
+
data['datetime'],
|
118 |
+
data['tempmax'],
|
119 |
+
data['tempmin'],
|
120 |
+
data['temp'],
|
121 |
+
data['feelslikemax'],
|
122 |
+
data['feelslikemin'],
|
123 |
+
data['feelslike'],
|
124 |
+
data['dew'],
|
125 |
+
data['humidity'],
|
126 |
+
data['precip'],
|
127 |
+
data['precipprob'],
|
128 |
+
data['precipcover'],
|
129 |
+
data['snow'],
|
130 |
+
data['snowdepth'],
|
131 |
+
data['windgust'],
|
132 |
+
data['windspeed'],
|
133 |
+
data['winddir'],
|
134 |
+
data['pressure'],
|
135 |
+
data['cloudcover'],
|
136 |
+
data['visibility'],
|
137 |
+
data['solarradiation'],
|
138 |
+
data['solarenergy'],
|
139 |
+
data['uvindex'],
|
140 |
+
data['conditions']
|
141 |
+
]
|
142 |
+
|
143 |
+
|
144 |
+
def get_weather_df(data):
|
145 |
+
col_names = [
|
146 |
+
'city',
|
147 |
+
'date',
|
148 |
+
'tempmax',
|
149 |
+
'tempmin',
|
150 |
+
'temp',
|
151 |
+
'feelslikemax',
|
152 |
+
'feelslikemin',
|
153 |
+
'feelslike',
|
154 |
+
'dew',
|
155 |
+
'humidity',
|
156 |
+
'precip',
|
157 |
+
'precipprob',
|
158 |
+
'precipcover',
|
159 |
+
'snow',
|
160 |
+
'snowdepth',
|
161 |
+
'windgust',
|
162 |
+
'windspeed',
|
163 |
+
'winddir',
|
164 |
+
'pressure',
|
165 |
+
'cloudcover',
|
166 |
+
'visibility',
|
167 |
+
'solarradiation',
|
168 |
+
'solarenergy',
|
169 |
+
'uvindex',
|
170 |
+
'conditions'
|
171 |
+
]
|
172 |
+
|
173 |
+
new_data = pd.DataFrame(
|
174 |
+
data,
|
175 |
+
columns=col_names
|
176 |
+
)
|
177 |
+
new_data.date = new_data.date.apply(timestamp_2_time1)
|
178 |
+
|
179 |
+
return new_data
|
180 |
+
|
181 |
+
def timestamp_2_time1(x):
|
182 |
+
dt_obj = datetime.strptime(str(x), '%Y-%m-%d')
|
183 |
+
dt_obj = dt_obj.timestamp() * 1000
|
184 |
+
return int(dt_obj)
|
185 |
+
|
186 |
+
def timestamp_2_time(x):
|
187 |
+
dt_obj = datetime.strptime(str(x), '%m/%d/%Y')
|
188 |
+
dt_obj = dt_obj.timestamp() * 1000
|
189 |
+
return int(dt_obj)
|