import gradio as gr import hopsworks import joblib import pandas as pd import numpy as np import folium import json import time from datetime import timedelta, datetime from branca.element import Figure from functions import decode_features, get_model def greet(name): project = hopsworks.login() #api = project.get_dataset_api() fs = project.get_feature_store() feature_view = fs.get_feature_view( name = 'weather_fv', version = 1 ) # The latest available data timestamp start_time = 1670972400000 #start_date = datetime.now() - timedelta(days=1) #start_time = int(start_date.timestamp()) * 1000 X = feature_view.get_batch_data(start_time=start_time) latest_date_unix = str(X.date.values[0])[:10] latest_date = time.ctime(int(latest_date_unix)) X = X.drop(columns=["datetime"]).fillna(0) model = get_model(project=project, model_name="temp_model", evaluation_metric="f1_score", sort_metrics_by="max") preds = model.predict(X) # cities = [city_tuple[0] for city_tuple in cities_coords.keys()] next_day_date = datetime.today() + timedelta(days=1) next_day = next_day_date.strftime ('%d/%m/%Y') str1 = "" for x in range(8): if(x != 0): str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature: " + preds+"\n" print(str1) return str1 demo = gr.Interface(fn=greet, inputs="text", outputs="text") if __name__ == "__main__": demo.launch()