import os import gradio as gr from huggingface_hub import HfApi, SpaceHardware # Set up Hugging Face API token and Space ID HF_TOKEN = os.getenv("HF_TOKEN") # Ensure your Hugging Face token is set as a secret TRAINING_SPACE_ID = "your_space_id_here" # Replace with your actual space ID # Initialize Hugging Face API api = HfApi(token=HF_TOKEN) # Function to check for a scheduled task (this is a placeholder for your actual task-checking logic) def get_task(): # You can implement logic here to check for scheduled tasks return None # For example, return None if no task is scheduled # Function to add a new task (you can implement this depending on your use case) def add_task(task): # Logic to add a new task return f"Task '{task}' added!" # Function to mark the task as "DONE" (this is a placeholder) def mark_as_done(task): # Mark the task as done once it's completed return f"Task '{task}' completed!" # Function to simulate training the model (replace with actual training logic) def train_and_upload(task): # Implement your model training logic here return f"Training model with task: {task}" # Gradio function to simulate chat-like interface def gradio_fn(task_input, history): task = get_task() if task is None: # If no task, add a new task and request hardware add_task_response = add_task(task_input) api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM) # Add the new task response to the chat history history.append(("Bot", add_task_response)) return "", history # Clear the input box and return updated history else: # If a task is available, check for hardware runtime = api.get_space_runtime(repo_id=TRAINING_SPACE_ID) if runtime.hardware == SpaceHardware.T4_MEDIUM: # Fine-tune model on GPU if available train_and_upload_response = train_and_upload(task) mark_as_done_response = mark_as_done(task) # Add responses to history history.append(("Bot", train_and_upload_response)) history.append(("Bot", mark_as_done_response)) # Reset to CPU hardware after training api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.CPU_BASIC) else: # If GPU hardware is not available, request it api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM) history.append(("Bot", "Requesting GPU hardware...")) return "", history # Clear the input box and return updated history # Create the Gradio interface for chat chat_interface = gr.Interface( fn=gradio_fn, inputs=[gr.Textbox(label="Enter task name", placeholder="Type your task here...", lines=1)], outputs=[gr.Chatbot()], live=True, title="Task Manager Bot", # Optional: Title for the interface description="Interact with the bot to manage tasks and trigger model training." ) # Launch the Gradio interface chat_interface.launch()