import gradio as gr import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer from datasets import load_dataset import os # Function to fine-tune model def fine_tune(model_name, dataset_url, file, epochs, batch_size, learning_rate): try: # Load dataset if dataset_url: dataset = load_dataset(dataset_url) elif file: dataset = load_dataset("csv", data_files={"train": file.name}) else: return "Please provide a dataset URL or upload a file." # Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) tokenizer = AutoTokenizer.from_pretrained(model_name) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) dataset = dataset.map(tokenize_function, batched=True) # Define training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch