Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer from Hugging Face Hub | |
model_path = "Canstralian/pentest_ai" # Replace with your model path if needed | |
model = AutoModelForCausalLM.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# Confirm successful loading | |
print(f"Model and Tokenizer loaded from {model_path}") | |
# Function to handle user inputs and generate responses | |
def generate_text(instruction): | |
# Encode the input text to token IDs | |
inputs = tokenizer.encode(instruction, return_tensors='pt', truncation=True, max_length=512) | |
print(f"Encoded input: {inputs}") | |
# Generate the output text | |
outputs = model.generate(inputs, max_length=150, num_beams=5, do_sample=True) # Adjust if needed | |
# Decode the output and return the response | |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return output_text | |
# Gradio interface to interact with the text generation function | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your question or prompt here..."), | |
outputs="text", | |
title="Pentest AI Text Generator", | |
description="Generate text using a fine-tuned model for pentesting-related queries." | |
) | |
# Launch the interface | |
iface.launch() | |