bug_bot / app.py
Canstralian's picture
Update app.py
9219820 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer from Hugging Face Hub
model_path = "Canstralian/pentest_ai" # Replace with your model path if needed
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Confirm successful loading
print(f"Model and Tokenizer loaded from {model_path}")
# Function to handle user inputs and generate responses
def generate_text(instruction):
# Encode the input text to token IDs
inputs = tokenizer.encode(instruction, return_tensors='pt', truncation=True, max_length=512)
print(f"Encoded input: {inputs}")
# Generate the output text
outputs = model.generate(inputs, max_length=150, num_beams=5, do_sample=True) # Adjust if needed
# Decode the output and return the response
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return output_text
# Gradio interface to interact with the text generation function
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your question or prompt here..."),
outputs="text",
title="Pentest AI Text Generator",
description="Generate text using a fine-tuned model for pentesting-related queries."
)
# Launch the interface
iface.launch()