Spaces:
Runtime error
Runtime error
Canstralian
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Load the model and tokenizer
|
6 |
-
model_path = "Canstralian/pentest_ai"
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
|
10 |
# Function to handle user inputs and generate responses
|
11 |
def generate_text(instruction):
|
12 |
-
# Encode the input
|
13 |
inputs = tokenizer.encode(instruction, return_tensors='pt', truncation=True, max_length=512)
|
14 |
|
15 |
-
# Generate the output
|
16 |
outputs = model.generate(inputs, max_length=150, num_beams=5, temperature=0.7, top_p=0.95, do_sample=True)
|
17 |
|
18 |
-
# Decode and return the
|
19 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
return output_text
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Launch the
|
29 |
iface.launch()
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import requests
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
from datasets import load_dataset
|
8 |
|
9 |
+
# Load the model and tokenizer from Hugging Face Hub
|
10 |
+
model_path = "Canstralian/pentest_ai" # Replace with your model path if needed
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
|
14 |
# Function to handle user inputs and generate responses
|
15 |
def generate_text(instruction):
|
16 |
+
# Encode the input text to token IDs
|
17 |
inputs = tokenizer.encode(instruction, return_tensors='pt', truncation=True, max_length=512)
|
18 |
|
19 |
+
# Generate the output text
|
20 |
outputs = model.generate(inputs, max_length=150, num_beams=5, temperature=0.7, top_p=0.95, do_sample=True)
|
21 |
|
22 |
+
# Decode the output and return the response
|
23 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
return output_text
|
25 |
|
26 |
+
# Function to load a sample dataset (this can be replaced with any dataset)
|
27 |
+
def load_sample_data():
|
28 |
+
# Load a sample dataset from Hugging Face Datasets
|
29 |
+
dataset = load_dataset("imdb", split="train[:5]")
|
30 |
+
df = pd.DataFrame(dataset)
|
31 |
+
return df.head() # Show a preview of the first 5 entries
|
32 |
+
|
33 |
+
# Gradio interface to interact with the text generation function
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=generate_text,
|
36 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question or prompt here..."),
|
37 |
+
outputs="text",
|
38 |
+
live=True,
|
39 |
+
title="Pentest AI Text Generator",
|
40 |
+
description="Generate text using a fine-tuned model for pentesting-related queries."
|
41 |
+
)
|
42 |
+
|
43 |
+
# Gradio interface for viewing the sample dataset (optional)
|
44 |
+
data_viewer = gr.Interface(fn=load_sample_data, inputs=[], outputs="dataframe", title="Sample Dataset Viewer")
|
45 |
|
46 |
+
# Launch the interfaces
|
47 |
iface.launch()
|
48 |
+
data_viewer.launch()
|