import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple # Initialize the InferenceClient client = InferenceClient("microsoft/phi-4") # Define the system message system_message = "You're an advanced AI assistant designed to engage in friendly and informative conversations. Your role is to respond to user queries with helpful, clear, and concise answers, while maintaining a conversational tone. You can provide advice, explanations, and solutions based on user input. " # Define the response function def respond( message: str, history: List[Tuple[str, str]], max_tokens: int, temperature: float, top_p: float, ): # Construct the messages for the model, adding the system prompt at the beginning messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Append the new user message messages.append({"role": "user", "content": message}) try: response = "" # Stream the response from the model for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if 'choices' in msg and len(msg['choices']) > 0: token = msg['choices'][0].get('delta', {}).get('content', '') if token: response += token yield response else: print("Error: API response did not contain expected data.") yield "Error: Could not process the request. Please try again." except Exception as e: print(f"An error occurred: {e}") yield "Error: An unexpected error occurred while processing your request." # Define the Gradio Interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(value=system_message, label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Chatbot(label="Conversation History"), # Added chat history as input ], outputs=[gr.Textbox(label="Response")] ) # Launch the Gradio interface if __name__ == "__main__": demo.launch()