Spaces:
Build error
Build error
import os | |
from datasets import load_dataset, load_metric | |
import numpy as np | |
from transformers import AutoAdapterModel, AutoTokenizer, TrainingArguments, Trainer | |
from dotenv import load_dotenv | |
# Load environment variables from .env file | |
load_dotenv() | |
# Access environment variables using os.getenv() | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
WAND_API_KEY = os.getenv("WAND_API_KEY") | |
# Use these variables as needed in your code | |
# Load datasets | |
dataset_pentesting = load_dataset("canstralian/pentesting-ai") | |
dataset_redpajama = load_dataset("togethercomputer/RedPajama-Data-1T") | |
# Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("canstralian/rabbitredeux") | |
def tokenize_function(examples): | |
return tokenizer(examples['text'], padding="max_length", truncation=True) | |
# Tokenize datasets | |
tokenized_dataset_pentesting = dataset_pentesting.map(tokenize_function, batched=True) | |
tokenized_dataset_redpajama = dataset_redpajama.map(tokenize_function, batched=True) | |
# Prepare datasets | |
train_dataset_pentesting = tokenized_dataset_pentesting["train"] | |
validation_dataset_pentesting = tokenized_dataset_pentesting["validation"] | |
# Load model and adapter | |
model = AutoAdapterModel.from_pretrained("canstralian/rabbitredeux") | |
model.load_adapter("Canstralian/RabbitRedux", set_active=True) | |
# Load metric (accuracy) | |
metric = load_metric("accuracy") | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
num_train_epochs=3, | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
warmup_steps=500, | |
weight_decay=0.01, | |
logging_dir="./logs", | |
logging_steps=10, | |
evaluation_strategy="epoch" | |
) | |
# Trainer setup | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset_pentesting, | |
eval_dataset=validation_dataset_pentesting, | |
compute_metrics=lambda p: metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) | |
) | |
# Training | |
trainer.train() | |
# Evaluate model | |
eval_results = trainer.evaluate() | |
print("Evaluation Results: ", eval_results) | |
# Save the fine-tuned model | |
model.save_pretrained("./fine_tuned_model") | |
# Test model on new data | |
new_data = """ | |
I love the ocean. It is so peaceful and serene. | |
""" | |
# Tokenize new data | |
tokenized_new_data = tokenize_function({"text": [new_data]}) | |
input_ids = tokenized_new_data["input_ids"][0] | |
attention_mask = tokenized_new_data["attention_mask"][0] | |
# Prediction | |
outputs = model(input_ids=np.array([input_ids]), attention_mask=np.array([attention_mask])) | |
prediction_scores = outputs.logits[0] # Getting logits for the first sample | |
# Get predicted label | |
predicted_label = np.argmax(prediction_scores) | |
print(f"The predicted label is: {predicted_label}") | |
# Evaluate predictions (using some assumed correct label) | |
actual_label = 1 # Replace with the actual label if known | |
accuracy = metric.compute(predictions=[predicted_label], references=[actual_label]) | |
print(f"Accuracy on new data: {accuracy}") | |