Update app.py
Browse files
app.py
CHANGED
@@ -1,176 +1,141 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
st.title("💬 ReconNinja Wordlists")
|
27 |
-
st.subheader("Tailored wordlists for efficient penetration testing")
|
28 |
-
st.markdown("""
|
29 |
-
This application generates customized wordlists for use in network reconnaissance and penetration testing.
|
30 |
-
Adjust the parameters to generate wordlists suited for your specific testing scenario.
|
31 |
-
""")
|
32 |
-
|
33 |
-
# Sidebar for user input
|
34 |
-
def get_user_inputs():
|
35 |
-
st.sidebar.header("Customize Your Wordlist")
|
36 |
-
st.sidebar.markdown("""
|
37 |
-
Adjust the following parameters to create wordlists optimized for your penetration testing tasks.
|
38 |
-
""")
|
39 |
-
wordlist_size = st.sidebar.slider("Wordlist Size", min_value=50, max_value=10000, value=1000, step=50)
|
40 |
-
min_length = st.sidebar.slider("Minimum Word Length", min_value=3, max_value=12, value=6)
|
41 |
-
max_length = st.sidebar.slider("Maximum Word Length", min_value=3, max_value=12, value=8)
|
42 |
-
include_special_chars = st.sidebar.checkbox("Include Special Characters", value=False)
|
43 |
-
include_numbers = st.sidebar.checkbox("Include Numbers", value=True)
|
44 |
-
|
45 |
-
return wordlist_size, min_length, max_length, include_special_chars, include_numbers
|
46 |
-
|
47 |
-
# Wordlist generation logic (mock-up for your project)
|
48 |
-
def generate_wordlist(size, min_length, max_length, special_chars=False, numbers=True):
|
49 |
-
words = []
|
50 |
-
for _ in range(size):
|
51 |
-
word = ''.join(np.random.choice(list("abcdefghijklmnopqrstuvwxyz"), size=np.random.randint(min_length, max_length)))
|
52 |
-
if special_chars:
|
53 |
-
word += np.random.choice(["!", "@", "#", "$", "%"])
|
54 |
-
if numbers:
|
55 |
-
word += np.random.choice([str(i) for i in range(10)])
|
56 |
-
words.append(word)
|
57 |
-
return words
|
58 |
-
|
59 |
-
# Wordlist generation and display
|
60 |
-
def generate_and_display_wordlist(wordlist_size, min_length, max_length, include_special_chars, include_numbers):
|
61 |
try:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
-
|
89 |
-
return
|
90 |
-
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# Calculate and display word length distribution
|
97 |
-
word_lengths = [len(word) for word in wordlist]
|
98 |
-
word_length_df = pd.DataFrame(word_lengths, columns=["Word Length"])
|
99 |
-
|
100 |
-
# Bar Chart for Word Length Distribution
|
101 |
-
st.subheader("Word Length Distribution")
|
102 |
-
fig, ax = plt.subplots(figsize=(8, 6))
|
103 |
-
sns.countplot(x=word_length_df["Word Length"], ax=ax, palette="viridis")
|
104 |
-
ax.set_title("Frequency of Word Lengths")
|
105 |
-
ax.set_xlabel("Word Length")
|
106 |
-
ax.set_ylabel("Frequency")
|
107 |
-
st.pyplot(fig)
|
108 |
-
|
109 |
-
# Word Cloud of Words
|
110 |
-
st.subheader("Word Cloud")
|
111 |
-
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(" ".join(wordlist))
|
112 |
-
st.image(wordcloud.to_array(), use_column_width=True)
|
113 |
-
|
114 |
-
# Analyze wordlist security (entropy)
|
115 |
-
def analyze_wordlist_security(wordlist):
|
116 |
-
if wordlist:
|
117 |
-
st.header("Analyze Wordlist Security")
|
118 |
-
|
119 |
-
entropy_slider = st.slider(
|
120 |
-
"Select Entropy Multiplier",
|
121 |
-
min_value=1.0,
|
122 |
-
max_value=10.0,
|
123 |
-
value=3.0,
|
124 |
-
step=0.1
|
125 |
-
)
|
126 |
-
|
127 |
-
# Simulate password entropy calculation
|
128 |
-
entropy = np.log2(len(wordlist) ** entropy_slider)
|
129 |
-
st.write(f"Estimated Entropy: {entropy:.2f} bits")
|
130 |
-
|
131 |
-
# Security analysis feedback
|
132 |
-
if entropy < 50:
|
133 |
-
st.warning("Low entropy detected! This wordlist might be vulnerable to brute-force attacks.")
|
134 |
-
else:
|
135 |
-
st.success("Good entropy! This wordlist is secure against most brute-force attempts.")
|
136 |
-
|
137 |
-
# Footer section
|
138 |
-
def display_footer():
|
139 |
-
st.markdown("---")
|
140 |
-
st.markdown(
|
141 |
-
"Made with ❤️ by Canstralian. For more information on ReconNinja, visit our [GitHub](https://github.com/Canstralian)."
|
142 |
-
)
|
143 |
-
|
144 |
-
# Main application function
|
145 |
-
def main():
|
146 |
-
choice = display_sidebar()
|
147 |
-
|
148 |
-
display_header()
|
149 |
-
|
150 |
-
if 'wordlist' not in st.session_state:
|
151 |
-
st.session_state.wordlist = None # Initialize wordlist if it doesn't exist
|
152 |
-
|
153 |
-
if choice == "Wordlist Generator":
|
154 |
-
wordlist_size, min_length, max_length, include_special_chars, include_numbers = get_user_inputs()
|
155 |
-
wordlist = generate_and_display_wordlist(
|
156 |
-
wordlist_size, min_length, max_length, include_special_chars, include_numbers
|
157 |
-
)
|
158 |
-
# Store wordlist in session_state
|
159 |
-
st.session_state.wordlist = wordlist
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
else:
|
171 |
-
analyze_wordlist_security(st.session_state.wordlist)
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
if __name__ == "__main__":
|
176 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import re
|
7 |
+
|
8 |
+
# Set up logging
|
9 |
+
logging.basicConfig(
|
10 |
+
filename="app.log",
|
11 |
+
level=logging.INFO,
|
12 |
+
format="%(asctime)s:%(levelname)s:%(message)s"
|
13 |
+
)
|
14 |
+
|
15 |
+
# Model and tokenizer loading function with caching
|
16 |
+
@st.cache_resource
|
17 |
+
def load_model():
|
18 |
+
"""
|
19 |
+
Loads and caches the pre-trained language model and tokenizer.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
model: Pre-trained language model.
|
23 |
+
tokenizer: Tokenizer for the model.
|
24 |
+
"""
|
25 |
+
model_path = "Canstralian/pentest_ai"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_path,
|
29 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
30 |
+
device_map="auto",
|
31 |
+
load_in_4bit=False,
|
32 |
+
load_in_8bit=True,
|
33 |
+
trust_remote_code=True,
|
34 |
)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
36 |
+
logging.info("Model and tokenizer loaded successfully.")
|
37 |
+
return model, tokenizer
|
38 |
+
except Exception as e:
|
39 |
+
logging.error(f"Error loading model: {e}")
|
40 |
+
st.error("Failed to load model. Please check the logs.")
|
41 |
+
return None, None
|
42 |
+
|
43 |
+
def sanitize_input(text):
|
44 |
+
"""
|
45 |
+
Sanitizes and validates user input text to prevent injection or formatting issues.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
text (str): User input text.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
str: Sanitized text.
|
52 |
+
"""
|
53 |
+
if not isinstance(text, str):
|
54 |
+
raise ValueError("Input must be a string.")
|
55 |
+
# Basic sanitization to remove unwanted characters
|
56 |
+
sanitized_text = re.sub(r"[^a-zA-Z0-9\s\.,!?]", "", text)
|
57 |
+
return sanitized_text.strip()
|
58 |
+
|
59 |
+
def generate_text(model, tokenizer, instruction):
|
60 |
+
"""
|
61 |
+
Generates text based on the provided instruction using the loaded model.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
model: The language model.
|
65 |
+
tokenizer: Tokenizer for encoding/decoding.
|
66 |
+
instruction (str): Instruction text for the model.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
str: Generated text response from the model.
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
# Validate and sanitize instruction input
|
73 |
+
instruction = sanitize_input(instruction)
|
74 |
+
tokens = tokenizer.encode(instruction, return_tensors='pt').to('cuda')
|
75 |
+
generated_tokens = model.generate(
|
76 |
+
tokens,
|
77 |
+
max_length=1024,
|
78 |
+
top_p=1.0,
|
79 |
+
temperature=0.5,
|
80 |
+
top_k=50
|
81 |
)
|
82 |
+
generated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
83 |
+
logging.info("Text generated successfully.")
|
84 |
+
return generated_text
|
85 |
+
except Exception as e:
|
86 |
+
logging.error(f"Error generating text: {e}")
|
87 |
+
return "Error in text generation."
|
88 |
|
89 |
+
@st.cache_data
|
90 |
+
def load_json_data():
|
91 |
+
"""
|
92 |
+
Loads JSON data, simulating the loading process with a sample list.
|
93 |
|
94 |
+
Returns:
|
95 |
+
list: A list of dictionaries with sample user data.
|
96 |
+
"""
|
97 |
+
try:
|
98 |
+
json_data = [
|
99 |
+
{"name": "Raja Clarke", "email": "consectetuer@yahoo.edu", "country": "Chile", "company": "Urna Nunc Consulting"},
|
100 |
+
{"name": "Melissa Hobbs", "email": "massa.non@hotmail.couk", "country": "France", "company": "Gravida Mauris Limited"},
|
101 |
+
{"name": "John Doe", "email": "john.doe@example.com", "country": "USA", "company": "Example Corp"},
|
102 |
+
{"name": "Jane Smith", "email": "jane.smith@example.org", "country": "Canada", "company": "Innovative Solutions Inc"}
|
103 |
+
]
|
104 |
+
logging.info("User JSON data loaded successfully.")
|
105 |
+
return json_data
|
106 |
except Exception as e:
|
107 |
+
logging.error(f"Error loading JSON data: {e}")
|
108 |
+
return []
|
109 |
+
|
110 |
+
# Streamlit App
|
111 |
+
st.title("Penetration Testing AI Assistant")
|
112 |
+
|
113 |
+
# Load the model and tokenizer
|
114 |
+
model, tokenizer = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
# User instruction input
|
117 |
+
instruction = st.text_input("Enter an instruction for the model:")
|
118 |
+
|
119 |
+
# Generate text button
|
120 |
+
if instruction:
|
121 |
+
try:
|
122 |
+
generated_text = generate_text(model, tokenizer, instruction)
|
123 |
+
st.subheader("Generated Text:")
|
124 |
+
st.write(generated_text)
|
125 |
+
except ValueError as ve:
|
126 |
+
st.error(f"Invalid input: {ve}")
|
127 |
+
except Exception as e:
|
128 |
+
logging.error(f"Error during text generation: {e}")
|
129 |
+
st.error("An error occurred. Please try again.")
|
130 |
|
131 |
+
# Display JSON user data
|
132 |
+
st.subheader("User Data (from JSON)")
|
133 |
+
user_data = load_json_data()
|
|
|
|
|
134 |
|
135 |
+
for user in user_data:
|
136 |
+
st.write(f"**Name:** {user['name']}")
|
137 |
+
st.write(f"**Email:** {user['email']}")
|
138 |
+
st.write(f"**Country:** {user['country']}")
|
139 |
+
st.write(f"**Company:** {user['company']}")
|
140 |
+
st.write("---")
|
141 |
|
|
|
|