Canstralian commited on
Commit
6a02c0b
1 Parent(s): 57aaefe

Rename app.py to src/app.py

Browse files
Files changed (1) hide show
  1. app.py → src/app.py +34 -34
app.py → src/app.py RENAMED
@@ -1,20 +1,11 @@
1
- import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
@@ -27,6 +18,7 @@ def respond(
27
 
28
  response = ""
29
 
 
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,30 +27,38 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
1
+ import streamlit as st
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Initialize the Inference client with the model
 
 
5
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
 
7
+ # Function to generate a response
8
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
 
 
 
 
9
  messages = [{"role": "system", "content": system_message}]
10
 
11
  for val in history:
 
18
 
19
  response = ""
20
 
21
+ # Make the API call and stream the response
22
  for message in client.chat_completion(
23
  messages,
24
  max_tokens=max_tokens,
 
27
  top_p=top_p,
28
  ):
29
  token = message.choices[0].delta.content
 
30
  response += token
31
  yield response
32
 
33
+ # Streamlit app layout
34
+ st.title("Zephyr Chatbot")
35
+
36
+ # Textbox for user input
37
+ user_message = st.text_input("Your message:")
38
+
39
+ # Text area for displaying chat history
40
+ history = st.session_state.get("history", [])
41
+
42
+ # System message (initialization)
43
+ system_message = st.text_area("System message", value="You are a friendly Chatbot.")
44
+
45
+ # Sliders for max tokens, temperature, and top-p
46
+ max_tokens = st.slider("Max new tokens", min_value=1, max_value=2048, value=512, step=1)
47
+ temperature = st.slider("Temperature", min_value=0.1, max_value=4.0, value=0.7, step=0.1)
48
+ top_p = st.slider("Top-p (nucleus sampling)", min_value=0.1, max_value=1.0, value=0.95, step=0.05)
49
 
50
+ # Button to send the message
51
+ if st.button("Send"):
52
+ # Get the response from the model
53
+ response_text = ""
54
+ for text in respond(user_message, history, system_message, max_tokens, temperature, top_p):
55
+ response_text = text
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
+ # Update chat history in session state
58
+ history.append((user_message, response_text))
59
+ st.session_state["history"] = history
60
 
61
+ # Display chat history
62
+ for user_msg, assistant_msg in history:
63
+ st.write(f"**You:** {user_msg}")
64
+ st.write(f"**Bot:** {assistant_msg}")