import os from datasets import load_dataset, load_metric import numpy as np from transformers import AutoAdapterModel, AutoTokenizer, TrainingArguments, Trainer from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Access environment variables using os.getenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") HF_TOKEN = os.getenv("HF_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") WAND_API_KEY = os.getenv("WAND_API_KEY") # Use these variables as needed in your code # Load datasets dataset_pentesting = load_dataset("canstralian/pentesting-ai") dataset_redpajama = load_dataset("togethercomputer/RedPajama-Data-1T") # Tokenizer tokenizer = AutoTokenizer.from_pretrained("canstralian/rabbitredeux") def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) # Tokenize datasets tokenized_dataset_pentesting = dataset_pentesting.map(tokenize_function, batched=True) tokenized_dataset_redpajama = dataset_redpajama.map(tokenize_function, batched=True) # Prepare datasets train_dataset_pentesting = tokenized_dataset_pentesting["train"] validation_dataset_pentesting = tokenized_dataset_pentesting["validation"] # Load model and adapter model = AutoAdapterModel.from_pretrained("canstralian/rabbitredeux") model.load_adapter("Canstralian/RabbitRedux", set_active=True) # Load metric (accuracy) metric = load_metric("accuracy") # Training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", logging_steps=10, evaluation_strategy="epoch" ) # Trainer setup trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset_pentesting, eval_dataset=validation_dataset_pentesting, compute_metrics=lambda p: metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) ) # Training trainer.train() # Evaluate model eval_results = trainer.evaluate() print("Evaluation Results: ", eval_results) # Save the fine-tuned model model.save_pretrained("./fine_tuned_model") # Test model on new data new_data = """ I love the ocean. It is so peaceful and serene. """ # Tokenize new data tokenized_new_data = tokenize_function({"text": [new_data]}) input_ids = tokenized_new_data["input_ids"][0] attention_mask = tokenized_new_data["attention_mask"][0] # Prediction outputs = model(input_ids=np.array([input_ids]), attention_mask=np.array([attention_mask])) prediction_scores = outputs.logits[0] # Getting logits for the first sample # Get predicted label predicted_label = np.argmax(prediction_scores) print(f"The predicted label is: {predicted_label}") # Evaluate predictions (using some assumed correct label) actual_label = 1 # Replace with the actual label if known accuracy = metric.compute(predictions=[predicted_label], references=[actual_label]) print(f"Accuracy on new data: {accuracy}")