Canstralian commited on
Commit
db634e4
1 Parent(s): 3cfa010

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -58
app.py CHANGED
@@ -1,63 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Canstralian/RedTeamAI")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+ import subprocess
4
+
5
+ # Load your Hugging Face model
6
+ model_name = "username/RedTeamAI-new" # Replace with your Hugging Face model path
7
+ chatbot = pipeline("text-generation", model=model_name)
8
+
9
+ def generate_response(prompt):
10
+ """Generate a response using the Hugging Face model."""
11
+ try:
12
+ response = chatbot(prompt, max_length=150, num_return_sequences=1)
13
+ return response[0]["generated_text"]
14
+ except Exception as e:
15
+ return f"Model Error: {str(e)}"
16
+
17
+ def execute_bash(command):
18
+ """Execute a Bash command and return the output."""
19
+ try:
20
+ result = subprocess.run(command, shell=True, capture_output=True, text=True)
21
+ return result.stdout or result.stderr
22
+ except Exception as e:
23
+ return f"Execution Error: {str(e)}"
24
+
25
+ def execute_python(script):
26
+ """Execute a Python script dynamically."""
27
+ try:
28
+ exec_globals = {}
29
+ exec(script, exec_globals)
30
+ return "Script executed successfully!"
31
+ except Exception as e:
32
+ return f"Python Execution Error: {str(e)}"
33
+
34
+ def chatbot_interface(user_input, execution_mode, code=None):
35
+ """Main interface logic for guiding and executing scripts."""
36
+ if execution_mode == "Guide":
37
+ return generate_response(user_input)
38
+ elif execution_mode == "Execute Bash":
39
+ return execute_bash(user_input)
40
+ elif execution_mode == "Execute Python":
41
+ return execute_python(code)
42
+ else:
43
+ return "Invalid mode selected!"
44
+
45
+ # Gradio Interface
46
+ interface = gr.Interface(
47
+ fn=chatbot_interface,
48
+ inputs=[
49
+ gr.Textbox(label="Enter your query or script"),
50
+ gr.Radio(["Guide", "Execute Bash", "Execute Python"], label="Mode"),
51
+ gr.Textbox(label="Python Script (if applicable)", lines=10, optional=True)
 
 
 
 
 
 
52
  ],
53
+ outputs="text",
54
+ title="RedTeamAI Script Assistant",
55
+ description="A GPT-powered chatbot to guide through and execute Bash and Python scripts."
56
  )
57
 
 
58
  if __name__ == "__main__":
59
+ interface.launch()