update code
Browse files- parameters.py +4 -3
- siameser.py +1 -13
- utils.py +19 -3
parameters.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
# transformer model
|
2 |
embedding_model = 'CaoHaiNam/vietnamese-address-embedding'
|
3 |
-
local_embedding_model = 'embedding-model'
|
4 |
-
|
5 |
|
6 |
NORM_ADDS_FILE_ALL_1 = 'data/standard_address_all_1.json'
|
7 |
-
STD_EMBEDDING_FILE_ALL_1 = 'data/address_matrix_all_1.pt'
|
|
|
|
|
|
|
|
1 |
# transformer model
|
2 |
embedding_model = 'CaoHaiNam/vietnamese-address-embedding'
|
|
|
|
|
3 |
|
4 |
NORM_ADDS_FILE_ALL_1 = 'data/standard_address_all_1.json'
|
5 |
+
STD_EMBEDDING_FILE_ALL_1 = 'data/address_matrix_all_1.pt'
|
6 |
+
|
7 |
+
LOG_DIRECTORY = 'logs'
|
8 |
+
LOG_RESULT_FILE = 'logs.json'
|
siameser.py
CHANGED
@@ -13,14 +13,8 @@ device = torch.device('cpu')
|
|
13 |
|
14 |
class Siameser:
|
15 |
def __init__(self, model_name=None, stadard_scope=None):
|
16 |
-
# print('Load model')
|
17 |
print("Load sentence embedding model (If this is the first time you run this repo, It could be take time to download sentence embedding model)")
|
18 |
self.threshold = 0.61
|
19 |
-
# if os.path.isdir(parameters.local_embedding_model):
|
20 |
-
# self.embedding_model = SentenceTransformer(parameters.local_embedding_model).to(device)
|
21 |
-
# else:
|
22 |
-
# self.embedding_model = SentenceTransformer(parameters.embedding_model).to(device)
|
23 |
-
# self.embedding_model.save(parameters.local_embedding_model)
|
24 |
self.embedding_model = SentenceTransformer(parameters.embedding_model).to(device)
|
25 |
|
26 |
if stadard_scope == 'all':
|
@@ -55,10 +49,8 @@ class Siameser:
|
|
55 |
else:
|
56 |
score = F.cosine_similarity(raw_add_vectors, self.std_embeddings)
|
57 |
s, top_k = score.topk(1)
|
58 |
-
|
59 |
-
# return
|
60 |
s, idx = s.tolist()[0], top_k.tolist()[0]
|
61 |
-
# if s < 0.57:
|
62 |
if s < self.threshold:
|
63 |
return {'Format Error': 'Xâu truyền vào không phải địa chỉ, mời nhập lại.'}
|
64 |
std_add = self.NORM_ADDS[str(idx)]
|
@@ -75,8 +67,6 @@ class Siameser:
|
|
75 |
score = F.cosine_similarity(raw_add_vectors, self.std_embeddings)
|
76 |
s, top_k = score.topk(k)
|
77 |
s, top_k = s.tolist(), top_k.tolist()
|
78 |
-
# print(s, top_k)
|
79 |
-
# return
|
80 |
|
81 |
if s[0] < self.threshold:
|
82 |
return {'Format Error': 'Dường như xâu truyền vào không phải địa chỉ, mời nhập lại.'}, {}
|
@@ -86,6 +76,4 @@ class Siameser:
|
|
86 |
std_add = self.NORM_ADDS[str(idx)]
|
87 |
top_std_adds.append(utils.get_full_result(raw_add_, std_add, round(score, 4)))
|
88 |
|
89 |
-
x1, x2 = top_std_adds[0], top_std_adds[1]
|
90 |
-
|
91 |
return top_std_adds[0], top_std_adds
|
|
|
13 |
|
14 |
class Siameser:
|
15 |
def __init__(self, model_name=None, stadard_scope=None):
|
|
|
16 |
print("Load sentence embedding model (If this is the first time you run this repo, It could be take time to download sentence embedding model)")
|
17 |
self.threshold = 0.61
|
|
|
|
|
|
|
|
|
|
|
18 |
self.embedding_model = SentenceTransformer(parameters.embedding_model).to(device)
|
19 |
|
20 |
if stadard_scope == 'all':
|
|
|
49 |
else:
|
50 |
score = F.cosine_similarity(raw_add_vectors, self.std_embeddings)
|
51 |
s, top_k = score.topk(1)
|
52 |
+
|
|
|
53 |
s, idx = s.tolist()[0], top_k.tolist()[0]
|
|
|
54 |
if s < self.threshold:
|
55 |
return {'Format Error': 'Xâu truyền vào không phải địa chỉ, mời nhập lại.'}
|
56 |
std_add = self.NORM_ADDS[str(idx)]
|
|
|
67 |
score = F.cosine_similarity(raw_add_vectors, self.std_embeddings)
|
68 |
s, top_k = score.topk(k)
|
69 |
s, top_k = s.tolist(), top_k.tolist()
|
|
|
|
|
70 |
|
71 |
if s[0] < self.threshold:
|
72 |
return {'Format Error': 'Dường như xâu truyền vào không phải địa chỉ, mời nhập lại.'}, {}
|
|
|
76 |
std_add = self.NORM_ADDS[str(idx)]
|
77 |
top_std_adds.append(utils.get_full_result(raw_add_, std_add, round(score, 4)))
|
78 |
|
|
|
|
|
79 |
return top_std_adds[0], top_std_adds
|
utils.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
# import numpy as np
|
2 |
import re
|
3 |
import string
|
|
|
|
|
|
|
4 |
|
5 |
# delete tone and lower
|
6 |
anphabet = ['a', 'ă', 'â', 'b', 'c', 'd',
|
@@ -39,10 +42,9 @@ def remove_accent(text):
|
|
39 |
# remove functuation
|
40 |
def remove_punctuation(text):
|
41 |
|
42 |
-
punctuation = r"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
|
43 |
whitespace = ' '
|
44 |
for i in text:
|
45 |
-
if i in punctuation:
|
46 |
text = text.replace(i, whitespace)
|
47 |
return ' '.join(text.split())
|
48 |
|
@@ -95,4 +97,18 @@ def get_full_result(raw_address, std_address, score):
|
|
95 |
full_result['detail_address'] = get_detail_address(raw_address, std_address)
|
96 |
full_result['main_address'] = std_address
|
97 |
full_result['similarity_score'] = score
|
98 |
-
return full_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import numpy as np
|
2 |
import re
|
3 |
import string
|
4 |
+
import json
|
5 |
+
from datetime import datetime
|
6 |
+
from typing import Text, Dict
|
7 |
|
8 |
# delete tone and lower
|
9 |
anphabet = ['a', 'ă', 'â', 'b', 'c', 'd',
|
|
|
42 |
# remove functuation
|
43 |
def remove_punctuation(text):
|
44 |
|
|
|
45 |
whitespace = ' '
|
46 |
for i in text:
|
47 |
+
if i in string.punctuation:
|
48 |
text = text.replace(i, whitespace)
|
49 |
return ' '.join(text.split())
|
50 |
|
|
|
97 |
full_result['detail_address'] = get_detail_address(raw_address, std_address)
|
98 |
full_result['main_address'] = std_address
|
99 |
full_result['similarity_score'] = score
|
100 |
+
return full_result
|
101 |
+
|
102 |
+
|
103 |
+
def save_result(file_path: Text, result: Dict) -> None:
|
104 |
+
log_sample = dict()
|
105 |
+
log_sample['result'] = result
|
106 |
+
log_sample['created_at'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
107 |
+
logs = json.load(open(file_path, "r", encoding="utf8"))
|
108 |
+
logs.append(log_sample)
|
109 |
+
json.dump(
|
110 |
+
logs,
|
111 |
+
open(file_path, "w", encoding="utf8"),
|
112 |
+
ensure_ascii=False,
|
113 |
+
indent=4
|
114 |
+
)
|