Spaces:
Running
Running
Caoyunkang
commited on
Commit
•
a25563f
1
Parent(s):
d3da3ef
first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -35
- .gitignore +4 -0
- LICENSE +21 -0
- README.md +176 -13
- app.py +133 -0
- asset/Fig_app.png +3 -0
- asset/Fig_detection_results.png +3 -0
- asset/Table_industrial.png +3 -0
- asset/Table_medical.png +3 -0
- asset/framework.png +3 -0
- asset/img.png +3 -0
- asset/img2.png +3 -0
- asset/img3.png +3 -0
- config.py +1 -0
- data_preprocess/br35h.py +50 -0
- data_preprocess/brain_mri.py +51 -0
- data_preprocess/btad.py +52 -0
- data_preprocess/clinicdb.py +52 -0
- data_preprocess/colondb.py +52 -0
- data_preprocess/dagm-pre.py +82 -0
- data_preprocess/dagm.py +52 -0
- data_preprocess/dtd.py +52 -0
- data_preprocess/endo.py +52 -0
- data_preprocess/headct-pre.py +41 -0
- data_preprocess/headct.py +52 -0
- data_preprocess/isic.py +52 -0
- data_preprocess/mpdd.py +52 -0
- data_preprocess/mvtec.py +52 -0
- data_preprocess/sdd-pre.py +75 -0
- data_preprocess/sdd.py +52 -0
- data_preprocess/tn3k.py +52 -0
- data_preprocess/visa.py +52 -0
- dataset/__init__.py +68 -0
- dataset/__pycache__/__init__.cpython-39.pyc +0 -0
- dataset/__pycache__/br35h.cpython-39.pyc +0 -0
- dataset/__pycache__/brain_mri.cpython-39.pyc +0 -0
- dataset/__pycache__/btad.cpython-39.pyc +0 -0
- dataset/__pycache__/clinicdb.cpython-39.pyc +0 -0
- dataset/__pycache__/colondb.cpython-39.pyc +0 -0
- dataset/__pycache__/dagm.cpython-39.pyc +0 -0
- dataset/__pycache__/dtd.cpython-39.pyc +0 -0
- dataset/__pycache__/headct.cpython-39.pyc +0 -0
- dataset/__pycache__/isic.cpython-39.pyc +0 -0
- dataset/__pycache__/mpdd.cpython-39.pyc +0 -0
- dataset/__pycache__/mvtec.cpython-39.pyc +0 -0
- dataset/__pycache__/sdd.cpython-39.pyc +0 -0
- dataset/__pycache__/tn3k.cpython-39.pyc +0 -0
- dataset/__pycache__/visa.cpython-39.pyc +0 -0
- dataset/base_dataset.py +138 -0
- dataset/br35h.py +18 -0
.gitattributes
CHANGED
@@ -1,35 +1,5 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.txt.gz filter=lfs diff=lfs merge=lfs -text
|
3 |
+
weights/pretrained_all.pth filter=lfs diff=lfs merge=lfs -text
|
4 |
+
weights/pretrained_mvtec_colondb.pth filter=lfs diff=lfs merge=lfs -text
|
5 |
+
weights/pretrained_visa_clinicdb.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/result/
|
2 |
+
/.idea/
|
3 |
+
/__pycache__/
|
4 |
+
/weights/
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Yunkang Cao
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +1,176 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AdaCLIP (Detecting Anomalies for Novel Categories)
|
2 |
+
[![HuggingFace Space](https://img.shields.io/badge/🤗-HuggingFace%20Space-cyan.svg)]()
|
3 |
+
|
4 |
+
> [**ECCV 24**] [**AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection**]().
|
5 |
+
>
|
6 |
+
> by [Yunkang Cao](https://caoyunkang.github.io/), [Jiangning Zhang](https://zhangzjn.github.io/), [Luca Frittoli](https://scholar.google.com/citations?user=cdML_XUAAAAJ),
|
7 |
+
> [Yuqi Cheng](https://scholar.google.com/citations?user=02BC-WgAAAAJ&hl=en), [Weiming Shen](https://scholar.google.com/citations?user=FuSHsx4AAAAJ&hl=en), [Giacomo Boracchi](https://boracchi.faculty.polimi.it/)
|
8 |
+
>
|
9 |
+
|
10 |
+
## Introduction
|
11 |
+
Zero-shot anomaly detection (ZSAD) targets the identification of anomalies within images from arbitrary novel categories.
|
12 |
+
This study introduces AdaCLIP for the ZSAD task, leveraging a pre-trained vision-language model (VLM), CLIP.
|
13 |
+
AdaCLIP incorporates learnable prompts into CLIP and optimizes them through training on auxiliary annotated anomaly detection data.
|
14 |
+
Two types of learnable prompts are proposed: \textit{static} and \textit{dynamic}. Static prompts are shared across all images, serving to preliminarily adapt CLIP for ZSAD.
|
15 |
+
In contrast, dynamic prompts are generated for each test image, providing CLIP with dynamic adaptation capabilities.
|
16 |
+
The combination of static and dynamic prompts is referred to as hybrid prompts, and yields enhanced ZSAD performance.
|
17 |
+
Extensive experiments conducted across 14 real-world anomaly detection datasets from industrial and medical domains indicate that AdaCLIP outperforms other ZSAD methods and can generalize better to different categories and even domains.
|
18 |
+
Finally, our analysis highlights the importance of diverse auxiliary data and optimized prompts for enhanced generalization capacity.
|
19 |
+
|
20 |
+
## Overview of AdaCLIP
|
21 |
+
![overview](asset/framework.png)
|
22 |
+
|
23 |
+
## 🛠️ Getting Started
|
24 |
+
|
25 |
+
### Installation
|
26 |
+
To set up the AdaCLIP environment, follow one of the methods below:
|
27 |
+
|
28 |
+
- Clone this repo:
|
29 |
+
```shell
|
30 |
+
git clone https://github.com/caoyunkang/AdaCLIP.git && cd AdaCLIP
|
31 |
+
```
|
32 |
+
- You can use our provided installation script for an automated setup::
|
33 |
+
```shell
|
34 |
+
sh install.sh
|
35 |
+
```
|
36 |
+
- If you prefer to construct the experimental environment manually, follow these steps:
|
37 |
+
```shell
|
38 |
+
conda create -n AdaCLIP python=3.9.5 -y
|
39 |
+
conda activate AdaCLIP
|
40 |
+
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
|
41 |
+
pip install tqdm tensorboard setuptools==58.0.4 opencv-python scikit-image scikit-learn matplotlib seaborn ftfy regex numpy==1.26.4
|
42 |
+
pip install gradio # Optional, for app
|
43 |
+
```
|
44 |
+
- Remember to update the dataset root in config.py according to your preference:
|
45 |
+
```python
|
46 |
+
DATA_ROOT = '../datasets' # Original setting
|
47 |
+
```
|
48 |
+
|
49 |
+
### Dataset Preparation
|
50 |
+
Please download our processed visual anomaly detection datasets to your `DATA_ROOT` as needed.
|
51 |
+
|
52 |
+
#### Industrial Visual Anomaly Detection Datasets
|
53 |
+
Note: some links are still in processing...
|
54 |
+
|
55 |
+
| Dataset | Google Drive | Baidu Drive | Task
|
56 |
+
|------------|------------------|------------------| ------------------|
|
57 |
+
| MVTec AD | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
58 |
+
| VisA | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
59 |
+
| MPDD | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
60 |
+
| BTAD | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
61 |
+
| KSDD | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
62 |
+
| DAGM | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
63 |
+
| DTD-Synthetic | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection & Localization |
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
#### Medical Visual Anomaly Detection Datasets
|
69 |
+
| Dataset | Google Drive | Baidu Drive | Task
|
70 |
+
|------------|------------------|------------------| ------------------|
|
71 |
+
| HeadCT | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection |
|
72 |
+
| BrainMRI | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection |
|
73 |
+
| Br35H | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Detection |
|
74 |
+
| ISIC | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Localization |
|
75 |
+
| ColonDB | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Localization |
|
76 |
+
| ClinicDB | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Localization |
|
77 |
+
| TN3K | [Google Drive](链接) | [Baidu Drive](链接) | Anomaly Localization |
|
78 |
+
|
79 |
+
#### Custom Datasets
|
80 |
+
To use your custom dataset, follow these steps:
|
81 |
+
|
82 |
+
1. Refer to the instructions in `./data_preprocess` to generate the JSON file for your dataset.
|
83 |
+
2. Use `./dataset/base_dataset.py` to construct your own dataset.
|
84 |
+
|
85 |
+
|
86 |
+
### Weight Preparation
|
87 |
+
|
88 |
+
We offer various pre-trained weights on different auxiliary datasets.
|
89 |
+
Please download the pre-trained weights in `./weights`.
|
90 |
+
|
91 |
+
| Pre-trained Datasets | Google Drive | Baidu Drive
|
92 |
+
|------------|------------------|------------------|
|
93 |
+
| MVTec AD & ClinicDB | [Google Drive](https://drive.google.com/file/d/1xVXANHGuJBRx59rqPRir7iqbkYzq45W0/view?usp=drive_link) | [Baidu Drive](链接) |
|
94 |
+
| VisA & ColonDB | [Google Drive](https://drive.google.com/file/d/1QGmPB0ByPZQ7FucvGODMSz7r5Ke5wx9W/view?usp=drive_link) | [Baidu Drive](链接) |
|
95 |
+
| All Datasets Mentioned Above | [Google Drive](https://drive.google.com/file/d/1Cgkfx3GAaSYnXPLolx-P7pFqYV0IVzZF/view?usp=drive_link) | [Baidu Drive](链接) |
|
96 |
+
|
97 |
+
|
98 |
+
### Train
|
99 |
+
|
100 |
+
By default, we use MVTec AD & ClinicDB for training and VisA for validation:
|
101 |
+
```shell
|
102 |
+
CUDA_VISIBLE_DEVICES=0 python train.py --save_fig True --training_data mvtec colondb --testing_data visa
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
Alternatively, for evaluation on MVTec AD & ClinicDB, we use VisA & ColonDB for training and MVTec AD for validation.
|
107 |
+
```shell
|
108 |
+
CUDA_VISIBLE_DEVICES=0 python train.py --save_fig True --training_data visa clinicdb --testing_data mvtec
|
109 |
+
```
|
110 |
+
Since we have utilized half-precision (FP16) for training, the training process can occasionally be unstable.
|
111 |
+
It is recommended to run the training process multiple times and choose the best model based on performance
|
112 |
+
on the validation set as the final model.
|
113 |
+
|
114 |
+
|
115 |
+
To construct a robust ZSAD model for demonstration, we also train our AdaCLIP on all AD datasets mentioned above:
|
116 |
+
```shell
|
117 |
+
CUDA_VISIBLE_DEVICES=0 python train.py --save_fig True \
|
118 |
+
--training_data \
|
119 |
+
br35h brain_mri btad clinicdb colondb \
|
120 |
+
dagm dtd headct isic mpdd mvtec sdd tn3k visa \
|
121 |
+
--testing_data mvtec
|
122 |
+
```
|
123 |
+
|
124 |
+
### Test
|
125 |
+
|
126 |
+
Manually select the best models from the validation set and place them in the `weights/` directory. Then, run the following testing script:
|
127 |
+
```shell
|
128 |
+
sh test.sh
|
129 |
+
```
|
130 |
+
|
131 |
+
If you want to test on a single image, you can refer to `test_single_image.sh`:
|
132 |
+
```shell
|
133 |
+
CUDA_VISIBLE_DEVICES=0 python test.py --testing_model image --ckt_path weights/pretrained_all.pth --save_fig True \
|
134 |
+
--image_path asset/img.png --class_name candle --save_name test.png
|
135 |
+
```
|
136 |
+
|
137 |
+
## Main Results
|
138 |
+
|
139 |
+
Due to differences in versions utilized, the reported performance may vary slightly compared to the detection performance
|
140 |
+
with the provided pre-trained weights. Some categories may show higher performance while others may show lower.
|
141 |
+
|
142 |
+
![Table_industrial](./asset/Table_industrial.png)
|
143 |
+
![Table_medical](./asset/Table_medical.png)
|
144 |
+
![Fig_detection_results](./asset/Fig_detection_results.png)
|
145 |
+
|
146 |
+
### :page_facing_up: Demo App
|
147 |
+
|
148 |
+
To run the demo application, use the following command:
|
149 |
+
|
150 |
+
```bash
|
151 |
+
python app.py
|
152 |
+
```
|
153 |
+
|
154 |
+
![Demo](./asset/Fig_app.png)
|
155 |
+
|
156 |
+
## 💘 Acknowledgements
|
157 |
+
Our work is largely inspired by the following projects. Thanks for their admiring contribution.
|
158 |
+
|
159 |
+
- [VAND-APRIL-GAN](https://github.com/ByChelsea/VAND-APRIL-GAN)
|
160 |
+
- [AnomalyCLIP](https://github.com/zqhang/AnomalyCLIP)
|
161 |
+
- [SAA](https://github.com/caoyunkang/Segment-Any-Anomaly)
|
162 |
+
|
163 |
+
|
164 |
+
## Stargazers over time
|
165 |
+
[![Stargazers over time](https://starchart.cc/caoyunkang/AdaCLIP.svg?variant=adaptive)](https://starchart.cc/caoyunkang/AdaCLIP)
|
166 |
+
|
167 |
+
|
168 |
+
## Citation
|
169 |
+
|
170 |
+
If you find this project helpful for your research, please consider citing the following BibTeX entry.
|
171 |
+
|
172 |
+
```BibTex
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
```
|
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import warnings
|
4 |
+
import os
|
5 |
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
from scipy.ndimage import gaussian_filter
|
10 |
+
import cv2
|
11 |
+
from method import AdaCLIP_Trainer
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
############ Init Model
|
15 |
+
ckt_path1 = 'weights/pretrained_mvtec_colondb.pth'
|
16 |
+
ckt_path2 = "weights/pretrained_visa_clinicdb.pth"
|
17 |
+
ckt_path3 = 'weights/pretrained_all.pth'
|
18 |
+
|
19 |
+
# Configurations
|
20 |
+
image_size = 518
|
21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
22 |
+
# device = 'cpu'
|
23 |
+
model = "ViT-L-14-336"
|
24 |
+
prompting_depth = 4
|
25 |
+
prompting_length = 5
|
26 |
+
prompting_type = 'SD'
|
27 |
+
prompting_branch = 'VL'
|
28 |
+
use_hsf = True
|
29 |
+
k_clusters = 20
|
30 |
+
|
31 |
+
config_path = os.path.join('./model_configs', f'{model}.json')
|
32 |
+
|
33 |
+
# Prepare model
|
34 |
+
with open(config_path, 'r') as f:
|
35 |
+
model_configs = json.load(f)
|
36 |
+
|
37 |
+
# Set up the feature hierarchy
|
38 |
+
n_layers = model_configs['vision_cfg']['layers']
|
39 |
+
substage = n_layers // 4
|
40 |
+
features_list = [substage, substage * 2, substage * 3, substage * 4]
|
41 |
+
|
42 |
+
model = AdaCLIP_Trainer(
|
43 |
+
backbone=model,
|
44 |
+
feat_list=features_list,
|
45 |
+
input_dim=model_configs['vision_cfg']['width'],
|
46 |
+
output_dim=model_configs['embed_dim'],
|
47 |
+
learning_rate=0.,
|
48 |
+
device=device,
|
49 |
+
image_size=image_size,
|
50 |
+
prompting_depth=prompting_depth,
|
51 |
+
prompting_length=prompting_length,
|
52 |
+
prompting_branch=prompting_branch,
|
53 |
+
prompting_type=prompting_type,
|
54 |
+
use_hsf=use_hsf,
|
55 |
+
k_clusters=k_clusters
|
56 |
+
).to(device)
|
57 |
+
|
58 |
+
|
59 |
+
def process_image(image, text, options):
|
60 |
+
# Load the model based on selected options
|
61 |
+
if 'MVTec AD+Colondb' in options:
|
62 |
+
model.load(ckt_path1)
|
63 |
+
elif 'VisA+Clinicdb' in options:
|
64 |
+
model.load(ckt_path2)
|
65 |
+
elif 'All' in options:
|
66 |
+
model.load(ckt_path3)
|
67 |
+
else:
|
68 |
+
# Default to 'All' if no valid option is provided
|
69 |
+
model.load(ckt_path3)
|
70 |
+
print('Invalid option. Defaulting to All.')
|
71 |
+
|
72 |
+
# Ensure image is in RGB mode
|
73 |
+
image = image.convert('RGB')
|
74 |
+
|
75 |
+
# Convert PIL image to NumPy array
|
76 |
+
np_image = np.array(image)
|
77 |
+
|
78 |
+
# Convert RGB to BGR for OpenCV
|
79 |
+
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
80 |
+
np_image = cv2.resize(np_image, (image_size, image_size))
|
81 |
+
# Preprocess the image and run the model
|
82 |
+
img_input = model.preprocess(image).unsqueeze(0)
|
83 |
+
img_input = img_input.to(model.device)
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
anomaly_map, anomaly_score = model.clip_model(img_input, [text], aggregation=True)
|
87 |
+
|
88 |
+
# Process anomaly map
|
89 |
+
anomaly_map = anomaly_map[0, :, :].cpu().numpy()
|
90 |
+
anomaly_score = anomaly_score[0].cpu().numpy()
|
91 |
+
anomaly_map = gaussian_filter(anomaly_map, sigma=4)
|
92 |
+
anomaly_map = (anomaly_map * 255).astype(np.uint8)
|
93 |
+
|
94 |
+
# Apply color map and blend with original image
|
95 |
+
heat_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
|
96 |
+
vis_map = cv2.addWeighted(heat_map, 0.5, np_image, 0.5, 0)
|
97 |
+
|
98 |
+
# Convert OpenCV image back to PIL image for Gradio
|
99 |
+
vis_map_pil = Image.fromarray(cv2.cvtColor(vis_map, cv2.COLOR_BGR2RGB))
|
100 |
+
|
101 |
+
return vis_map_pil, f'{anomaly_score:.3f}'
|
102 |
+
|
103 |
+
# Define examples
|
104 |
+
examples = [
|
105 |
+
["asset/img.png", "candle", "MVTec AD+Colondb"],
|
106 |
+
["asset/img2.png", "bottle", "VisA+Clinicdb"],
|
107 |
+
["asset/img3.png", "button", "All"],
|
108 |
+
]
|
109 |
+
|
110 |
+
# Gradio interface layout
|
111 |
+
demo = gr.Interface(
|
112 |
+
fn=process_image,
|
113 |
+
inputs=[
|
114 |
+
gr.Image(type="pil", label="Upload Image"),
|
115 |
+
gr.Textbox(label="Class Name"),
|
116 |
+
gr.Radio(["MVTec AD+Colondb",
|
117 |
+
"VisA+Clinicdb",
|
118 |
+
"All"],
|
119 |
+
label="Pre-trained Datasets")
|
120 |
+
],
|
121 |
+
outputs=[
|
122 |
+
gr.Image(type="pil", label="Output Image"),
|
123 |
+
gr.Textbox(label="Anomaly Score"),
|
124 |
+
],
|
125 |
+
examples=examples,
|
126 |
+
title="AdaCLIP -- Zero-shot Anomaly Detection",
|
127 |
+
description="Upload an image, enter class name, and select pre-trained datasets to do zero-shot anomaly detection"
|
128 |
+
)
|
129 |
+
|
130 |
+
# Launch the demo
|
131 |
+
demo.launch()
|
132 |
+
# demo.launch(server_name="0.0.0.0", server_port=10002)
|
133 |
+
|
asset/Fig_app.png
ADDED
Git LFS Details
|
asset/Fig_detection_results.png
ADDED
Git LFS Details
|
asset/Table_industrial.png
ADDED
Git LFS Details
|
asset/Table_medical.png
ADDED
Git LFS Details
|
asset/framework.png
ADDED
Git LFS Details
|
asset/img.png
ADDED
Git LFS Details
|
asset/img2.png
ADDED
Git LFS Details
|
asset/img3.png
ADDED
Git LFS Details
|
config.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
DATA_ROOT = '../datasets'
|
data_preprocess/br35h.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
Br35h_ROOT = os.path.join(DATA_ROOT, 'Br35h_anomaly_detection')
|
7 |
+
class Br35hSolver(object):
|
8 |
+
CLSNAMES = [
|
9 |
+
'br35h',
|
10 |
+
]
|
11 |
+
|
12 |
+
def __init__(self, root=Br35h_ROOT, train_ratio=0.5):
|
13 |
+
self.root = root
|
14 |
+
self.meta_path = f'{root}/meta.json'
|
15 |
+
self.train_ratio = train_ratio
|
16 |
+
|
17 |
+
def run(self):
|
18 |
+
self.generate_meta_info()
|
19 |
+
|
20 |
+
def generate_meta_info(self):
|
21 |
+
info = dict(train={}, test={})
|
22 |
+
for cls_name in self.CLSNAMES:
|
23 |
+
cls_dir = f'{self.root}/{cls_name}'
|
24 |
+
for phase in ['train', 'test']:
|
25 |
+
cls_info = []
|
26 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
27 |
+
for specie in species:
|
28 |
+
is_abnormal = True if specie not in ['good'] else False
|
29 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
30 |
+
img_names.sort()
|
31 |
+
|
32 |
+
for idx, img_name in enumerate(img_names):
|
33 |
+
info_img = dict(
|
34 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
35 |
+
mask_path=f'',
|
36 |
+
cls_name=cls_name,
|
37 |
+
specie_name=specie,
|
38 |
+
anomaly=1 if is_abnormal else 0,
|
39 |
+
)
|
40 |
+
cls_info.append(info_img)
|
41 |
+
|
42 |
+
info[phase][cls_name] = cls_info
|
43 |
+
|
44 |
+
with open(self.meta_path, 'w') as f:
|
45 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
runner = Br35hSolver(root=Br35h_ROOT)
|
50 |
+
runner.run()
|
data_preprocess/brain_mri.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
BrainMRI_ROOT = os.path.join(DATA_ROOT, 'BrainMRI')
|
7 |
+
|
8 |
+
class BrainMRISolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'brain_mri',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=BrainMRI_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
img_names.sort()
|
32 |
+
|
33 |
+
for idx, img_name in enumerate(img_names):
|
34 |
+
info_img = dict(
|
35 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
36 |
+
mask_path=f'',
|
37 |
+
cls_name=cls_name,
|
38 |
+
specie_name=specie,
|
39 |
+
anomaly=1 if is_abnormal else 0,
|
40 |
+
)
|
41 |
+
cls_info.append(info_img)
|
42 |
+
|
43 |
+
info[phase][cls_name] = cls_info
|
44 |
+
|
45 |
+
with open(self.meta_path, 'w') as f:
|
46 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
runner = BrainMRISolver(root=BrainMRI_ROOT)
|
51 |
+
runner.run()
|
data_preprocess/btad.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
BTAD_ROOT = os.path.join(DATA_ROOT, 'BTech_Dataset_transformed')
|
7 |
+
|
8 |
+
class BTADSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'01', '02', '03',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=BTAD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['ok'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = BTADSolver(root=BTAD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/clinicdb.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ClinicDB_ROOT = os.path.join(DATA_ROOT, 'CVC-ClinicDB')
|
7 |
+
|
8 |
+
class ClinicDBSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'ClinicDB',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ClinicDB_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ClinicDBSolver(root=ClinicDB_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/colondb.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ColonDB_ROOT = os.path.join(DATA_ROOT, 'CVC-ColonDB')
|
7 |
+
|
8 |
+
class ColonDBSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'ColonDB',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ColonDB_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ColonDBSolver(root=ColonDB_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/dagm-pre.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import cv2
|
5 |
+
import argparse
|
6 |
+
from config import DATA_ROOT
|
7 |
+
|
8 |
+
dataset_root = os.path.join(DATA_ROOT, 'DAGM2007')
|
9 |
+
|
10 |
+
class_names = os.listdir(dataset_root)
|
11 |
+
|
12 |
+
|
13 |
+
for class_name in class_names:
|
14 |
+
states = os.listdir(os.path.join(dataset_root, class_name))
|
15 |
+
for state in states:
|
16 |
+
images = list()
|
17 |
+
mask = list()
|
18 |
+
files = os.listdir(os.path.join(dataset_root, class_name,state))
|
19 |
+
for f in files:
|
20 |
+
if 'PNG' in f[-3:]:
|
21 |
+
images.append(f)
|
22 |
+
files = os.listdir(os.path.join(dataset_root, class_name, state,'Label'))
|
23 |
+
for f in files:
|
24 |
+
if 'PNG' in f[-3:]:
|
25 |
+
mask.append(f)
|
26 |
+
normal_image_path_train = list()
|
27 |
+
normal_image_path_test = list()
|
28 |
+
normal_image_path = list()
|
29 |
+
abnormal_image_path = list()
|
30 |
+
abnormal_image_label = list()
|
31 |
+
for f in images:
|
32 |
+
id = f[-8:-4]
|
33 |
+
flag = 0
|
34 |
+
for y in mask:
|
35 |
+
if id in y:
|
36 |
+
abnormal_image_path.append(f)
|
37 |
+
abnormal_image_label.append(y)
|
38 |
+
flag = 1
|
39 |
+
break
|
40 |
+
if flag == 0:
|
41 |
+
normal_image_path.append(f)
|
42 |
+
|
43 |
+
if len(abnormal_image_path) != len(abnormal_image_label):
|
44 |
+
raise ValueError
|
45 |
+
length = len(abnormal_image_path)
|
46 |
+
|
47 |
+
normal_image_path_test = normal_image_path[:length]
|
48 |
+
normal_image_path_train = normal_image_path[length:]
|
49 |
+
|
50 |
+
target_root = '../datasets/DAGM_anomaly_detection'
|
51 |
+
|
52 |
+
train_root = os.path.join(target_root, class_name, 'train','good')
|
53 |
+
if not os.path.exists(train_root):
|
54 |
+
os.makedirs(train_root)
|
55 |
+
for f in normal_image_path_train:
|
56 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,f))
|
57 |
+
cv2.imwrite(os.path.join(train_root,f), image_data)
|
58 |
+
|
59 |
+
test_root = os.path.join(target_root, class_name, 'test','good')
|
60 |
+
if not os.path.exists(test_root):
|
61 |
+
os.makedirs(test_root)
|
62 |
+
for f in normal_image_path_test:
|
63 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,f))
|
64 |
+
cv2.imwrite(os.path.join(test_root,f), image_data)
|
65 |
+
|
66 |
+
test_root = os.path.join(target_root, class_name, 'test','defect')
|
67 |
+
if not os.path.exists(test_root):
|
68 |
+
os.makedirs(test_root)
|
69 |
+
for f in abnormal_image_path:
|
70 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,f))
|
71 |
+
cv2.imwrite(os.path.join(test_root,f), image_data)
|
72 |
+
|
73 |
+
test_root = os.path.join(target_root, class_name, 'ground_truth','defect')
|
74 |
+
if not os.path.exists(test_root):
|
75 |
+
os.makedirs(test_root)
|
76 |
+
for f in mask:
|
77 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,'Label',f))
|
78 |
+
cv2.imwrite(os.path.join(test_root,f), image_data)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
print("Done")
|
data_preprocess/dagm.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
DAGM_ROOT = os.path.join(DATA_ROOT, 'DAGM_anomaly_detection')
|
7 |
+
|
8 |
+
class DAGMSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'Class1', 'Class2', 'Class3', 'Class4', 'Class5','Class6','Class7','Class8','Class9','Class10',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=DAGM_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = DAGMSolver(root=DAGM_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/dtd.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
DTD_ROOT = os.path.join(DATA_ROOT, 'DTD-Synthetic')
|
7 |
+
|
8 |
+
class DTDSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'Blotchy_099', 'Fibrous_183', 'Marbled_078', 'Matted_069', 'Mesh_114','Perforated_037','Stratified_154','Woven_001','Woven_068','Woven_104','Woven_125','Woven_127',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=DTD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = DTDSolver(root=DTD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/endo.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ENDO_ROOT = os.path.join(DATA_ROOT, 'EndoTect')
|
7 |
+
|
8 |
+
class ENDOSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'endo',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ENDO_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ENDOSolver(root=ENDO_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/headct-pre.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import shutil
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
from config import DATA_ROOT
|
8 |
+
|
9 |
+
dataset_root = os.path.join(DATA_ROOT, 'head_ct')
|
10 |
+
|
11 |
+
label_file = os.path.join(dataset_root, 'labels.csv')
|
12 |
+
|
13 |
+
data = np.loadtxt(label_file, dtype=int, delimiter=',', skiprows=1)
|
14 |
+
|
15 |
+
fnames = data[:, 0]
|
16 |
+
label = data[:, 1]
|
17 |
+
|
18 |
+
normal_fnames = fnames[label==0]
|
19 |
+
outlier_fnames = fnames[label==1]
|
20 |
+
|
21 |
+
|
22 |
+
target_root = '../datasets/HeadCT_anomaly_detection/headct'
|
23 |
+
train_root = os.path.join(target_root, 'train/good')
|
24 |
+
if not os.path.exists(train_root):
|
25 |
+
os.makedirs(train_root)
|
26 |
+
|
27 |
+
test_normal_root = os.path.join(target_root, 'test/good')
|
28 |
+
if not os.path.exists(test_normal_root):
|
29 |
+
os.makedirs(test_normal_root)
|
30 |
+
for f in normal_fnames:
|
31 |
+
source = os.path.join(dataset_root, 'head_ct/', '{:0>3d}.png'.format(f))
|
32 |
+
shutil.copy(source, test_normal_root)
|
33 |
+
|
34 |
+
test_outlier_root = os.path.join(target_root, 'test/defect')
|
35 |
+
if not os.path.exists(test_outlier_root):
|
36 |
+
os.makedirs(test_outlier_root)
|
37 |
+
for f in outlier_fnames:
|
38 |
+
source = os.path.join(dataset_root, 'head_ct/', '{:0>3d}.png'.format(f))
|
39 |
+
shutil.copy(source, test_outlier_root)
|
40 |
+
|
41 |
+
print('Done')
|
data_preprocess/headct.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
# from dataset import MPDD_ROOT
|
5 |
+
# from dataset.mpdd import MPDD_ROOT
|
6 |
+
|
7 |
+
|
8 |
+
HEADCT_ROOT = '../datasets/HeadCT_anomaly_detection'
|
9 |
+
class HEADCTSolver(object):
|
10 |
+
CLSNAMES = [
|
11 |
+
'headct',
|
12 |
+
]
|
13 |
+
|
14 |
+
def __init__(self, root=HEADCT_ROOT, train_ratio=0.5):
|
15 |
+
self.root = root
|
16 |
+
self.meta_path = f'{root}/meta.json'
|
17 |
+
self.train_ratio = train_ratio
|
18 |
+
|
19 |
+
def run(self):
|
20 |
+
self.generate_meta_info()
|
21 |
+
|
22 |
+
def generate_meta_info(self):
|
23 |
+
info = dict(train={}, test={})
|
24 |
+
for cls_name in self.CLSNAMES:
|
25 |
+
cls_dir = f'{self.root}/{cls_name}'
|
26 |
+
for phase in ['train', 'test']:
|
27 |
+
cls_info = []
|
28 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
29 |
+
for specie in species:
|
30 |
+
is_abnormal = True if specie not in ['good'] else False
|
31 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
32 |
+
img_names.sort()
|
33 |
+
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = HEADCTSolver(root=HEADCT_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/isic.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ISIC_ROOT = os.path.join(DATA_ROOT, 'ISIC')
|
7 |
+
|
8 |
+
class ISICSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'isic',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ISIC_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ISICSolver(root=ISIC_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/mpdd.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
MPDD_ROOT = os.path.join(DATA_ROOT, 'MPDD')
|
7 |
+
|
8 |
+
class MPDDSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'bracket_black', 'bracket_brown', 'bracket_white', 'connector', 'metal_plate','tubes',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=MPDD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = MPDDSolver(root=MPDD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/mvtec.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from dataset import MVTEC_ROOT
|
5 |
+
|
6 |
+
class MVTecSolver(object):
|
7 |
+
CLSNAMES = [
|
8 |
+
'bottle', 'cable', 'capsule', 'carpet', 'grid',
|
9 |
+
'hazelnut', 'leather', 'metal_nut', 'pill', 'screw',
|
10 |
+
'tile', 'toothbrush', 'transistor', 'wood', 'zipper',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=MVTEC_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = MVTecSolver(root=MVTEC_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/sdd-pre.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import cv2
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
from config import DATA_ROOT
|
8 |
+
|
9 |
+
dataset_root = os.path.join(DATA_ROOT, 'KolektorSDD')
|
10 |
+
|
11 |
+
dirs = os.listdir(dataset_root)
|
12 |
+
normal_images = list()
|
13 |
+
normal_labels = list()
|
14 |
+
normal_fname = list()
|
15 |
+
outlier_images = list()
|
16 |
+
outlier_labels = list()
|
17 |
+
outlier_fname = list()
|
18 |
+
for d in dirs:
|
19 |
+
files = os.listdir(os.path.join(dataset_root, d))
|
20 |
+
images = list()
|
21 |
+
for f in files:
|
22 |
+
if 'jpg' in f[-3:]:
|
23 |
+
images.append(f)
|
24 |
+
|
25 |
+
for image in images:
|
26 |
+
split_images = list()
|
27 |
+
split_labels = list()
|
28 |
+
image_name = image.split('.')[0]
|
29 |
+
image_data = cv2.imread(os.path.join(dataset_root, d, image))
|
30 |
+
label_data = cv2.imread(os.path.join(dataset_root, d, image_name + '_label.bmp'))
|
31 |
+
if image_data.shape != label_data.shape:
|
32 |
+
raise ValueError
|
33 |
+
image_length = image_data.shape[0]
|
34 |
+
split_images.append(image_data[:image_length // 3, :, :])
|
35 |
+
split_images.append(image_data[image_length // 3:image_length * 2 // 3, :, :])
|
36 |
+
split_images.append(image_data[image_length * 2 // 3:, :, :])
|
37 |
+
split_labels.append(label_data[:image_length // 3, :, :])
|
38 |
+
split_labels.append(label_data[image_length // 3:image_length * 2 // 3, :, :])
|
39 |
+
split_labels.append(label_data[image_length * 2 // 3:, :, :])
|
40 |
+
for i, (im, la) in enumerate(zip(split_images, split_labels)):
|
41 |
+
if np.max(la) != 0:
|
42 |
+
outlier_images.append(im)
|
43 |
+
outlier_labels.append(la)
|
44 |
+
outlier_fname.append(d + '_' + image_name + '_' + str(i))
|
45 |
+
else:
|
46 |
+
normal_images.append(im)
|
47 |
+
normal_labels.append(la)
|
48 |
+
normal_fname.append(d + '_' + image_name + '_' + str(i))
|
49 |
+
|
50 |
+
normal_train, normal_test, normal_name_train, normal_name_test = train_test_split(normal_images, normal_fname, test_size=0.25, random_state=42)
|
51 |
+
|
52 |
+
target_root = '../datasets/SDD_anomaly_detection/SDD'
|
53 |
+
train_root = os.path.join(target_root, 'train/good')
|
54 |
+
if not os.path.exists(train_root):
|
55 |
+
os.makedirs(train_root)
|
56 |
+
for image, name in zip(normal_train, normal_name_train):
|
57 |
+
cv2.imwrite(os.path.join(train_root, name + '.png'), image)
|
58 |
+
|
59 |
+
test_root = os.path.join(target_root, 'test/good')
|
60 |
+
if not os.path.exists(test_root):
|
61 |
+
os.makedirs(test_root)
|
62 |
+
for image, name in zip(normal_test, normal_name_test):
|
63 |
+
cv2.imwrite(os.path.join(test_root, name + '.png'), image)
|
64 |
+
|
65 |
+
defect_root = os.path.join(target_root, 'test/defect')
|
66 |
+
label_root = os.path.join(target_root, 'ground_truth/defect')
|
67 |
+
if not os.path.exists(defect_root):
|
68 |
+
os.makedirs(defect_root)
|
69 |
+
if not os.path.exists(label_root):
|
70 |
+
os.makedirs(label_root)
|
71 |
+
for image, label, name in zip(outlier_images, outlier_labels, outlier_fname):
|
72 |
+
cv2.imwrite(os.path.join(defect_root, name + '.png'), image)
|
73 |
+
cv2.imwrite(os.path.join(label_root, name + '_mask.png'), label)
|
74 |
+
|
75 |
+
print("Done")
|
data_preprocess/sdd.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
SDD_ROOT = os.path.join(DATA_ROOT, 'SDD_anomaly_detection')
|
7 |
+
|
8 |
+
class SDDSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'SDD',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=SDD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = SDDSolver(root=SDD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/tn3k.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
TN3K_ROOT = os.path.join(DATA_ROOT, 'TN3K')
|
7 |
+
|
8 |
+
class TN3KSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'tn3k',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=TN3K_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = TN3KSolver(root=TN3K_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/visa.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
from dataset import VISA_ROOT
|
6 |
+
|
7 |
+
class VisASolver(object):
|
8 |
+
CLSNAMES = [
|
9 |
+
'candle', 'capsules', 'cashew', 'chewinggum', 'fryum',
|
10 |
+
'macaroni1', 'macaroni2', 'pcb1', 'pcb2', 'pcb3',
|
11 |
+
'pcb4', 'pipe_fryum',
|
12 |
+
]
|
13 |
+
|
14 |
+
def __init__(self, root=VISA_ROOT, train_ratio=0.5):
|
15 |
+
self.root = root
|
16 |
+
self.meta_path = f'{root}/meta.json'
|
17 |
+
self.phases = ['train', 'test']
|
18 |
+
self.csv_data = pd.read_csv(f'{root}/split_csv/1cls.csv', header=0)
|
19 |
+
self.train_ratio = train_ratio
|
20 |
+
|
21 |
+
def run(self):
|
22 |
+
self.generate_meta_info()
|
23 |
+
|
24 |
+
def generate_meta_info(self):
|
25 |
+
columns = self.csv_data.columns # [object, split, label, image, mask]
|
26 |
+
info = {phase: {} for phase in self.phases}
|
27 |
+
for cls_name in self.CLSNAMES:
|
28 |
+
cls_data = self.csv_data[self.csv_data[columns[0]] == cls_name]
|
29 |
+
for phase in self.phases:
|
30 |
+
cls_info = []
|
31 |
+
cls_data_phase = cls_data[cls_data[columns[1]] == phase]
|
32 |
+
cls_data_phase.index = list(range(len(cls_data_phase)))
|
33 |
+
for idx in range(cls_data_phase.shape[0]):
|
34 |
+
data = cls_data_phase.loc[idx]
|
35 |
+
is_abnormal = True if data[2] == 'anomaly' else False
|
36 |
+
info_img = dict(
|
37 |
+
img_path=data[3],
|
38 |
+
mask_path=data[4] if is_abnormal else '',
|
39 |
+
cls_name=cls_name,
|
40 |
+
specie_name='',
|
41 |
+
anomaly=1 if is_abnormal else 0,
|
42 |
+
)
|
43 |
+
cls_info.append(info_img)
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
with open(self.meta_path, 'w') as f:
|
46 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = VisASolver(root=VISA_ROOT)
|
52 |
+
runner.run()
|
dataset/__init__.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .mvtec import MVTEC_CLS_NAMES, MVTecDataset, MVTEC_ROOT
|
2 |
+
from .visa import VISA_CLS_NAMES, VisaDataset, VISA_ROOT
|
3 |
+
from .mpdd import MPDD_CLS_NAMES, MPDDDataset, MPDD_ROOT
|
4 |
+
from .btad import BTAD_CLS_NAMES, BTADDataset, BTAD_ROOT
|
5 |
+
from .sdd import SDD_CLS_NAMES, SDDDataset, SDD_ROOT
|
6 |
+
from .dagm import DAGM_CLS_NAMES, DAGMDataset, DAGM_ROOT
|
7 |
+
from .dtd import DTD_CLS_NAMES,DTDDataset,DTD_ROOT
|
8 |
+
from .isic import ISIC_CLS_NAMES,ISICDataset,ISIC_ROOT
|
9 |
+
from .colondb import ColonDB_CLS_NAMES, ColonDBDataset, ColonDB_ROOT
|
10 |
+
from .clinicdb import ClinicDB_CLS_NAMES, ClinicDBDataset, ClinicDB_ROOT
|
11 |
+
from .tn3k import TN3K_CLS_NAMES, TN3KDataset, TN3K_ROOT
|
12 |
+
from .headct import HEADCT_CLS_NAMES,HEADCTDataset,HEADCT_ROOT
|
13 |
+
from .brain_mri import BrainMRI_CLS_NAMES,BrainMRIDataset,BrainMRI_ROOT
|
14 |
+
from .br35h import Br35h_CLS_NAMES,Br35hDataset,Br35h_ROOT
|
15 |
+
from torch.utils.data import ConcatDataset
|
16 |
+
|
17 |
+
dataset_dict = {
|
18 |
+
'br35h': (Br35h_CLS_NAMES, Br35hDataset, Br35h_ROOT),
|
19 |
+
'brain_mri': (BrainMRI_CLS_NAMES, BrainMRIDataset, BrainMRI_ROOT),
|
20 |
+
'btad': (BTAD_CLS_NAMES, BTADDataset, BTAD_ROOT),
|
21 |
+
'clinicdb': (ClinicDB_CLS_NAMES, ClinicDBDataset, ClinicDB_ROOT),
|
22 |
+
'colondb': (ColonDB_CLS_NAMES, ColonDBDataset, ColonDB_ROOT),
|
23 |
+
'dagm': (DAGM_CLS_NAMES, DAGMDataset, DAGM_ROOT),
|
24 |
+
'dtd': (DTD_CLS_NAMES, DTDDataset, DTD_ROOT),
|
25 |
+
'headct': (HEADCT_CLS_NAMES, HEADCTDataset, HEADCT_ROOT),
|
26 |
+
'isic': (ISIC_CLS_NAMES, ISICDataset, ISIC_ROOT),
|
27 |
+
'mpdd': (MPDD_CLS_NAMES, MPDDDataset, MPDD_ROOT),
|
28 |
+
'mvtec': (MVTEC_CLS_NAMES, MVTecDataset, MVTEC_ROOT),
|
29 |
+
'sdd': (SDD_CLS_NAMES, SDDDataset, SDD_ROOT),
|
30 |
+
'tn3k': (TN3K_CLS_NAMES, TN3KDataset, TN3K_ROOT),
|
31 |
+
'visa': (VISA_CLS_NAMES, VisaDataset, VISA_ROOT),
|
32 |
+
}
|
33 |
+
|
34 |
+
def get_data(dataset_type_list, transform, target_transform, training):
|
35 |
+
if not isinstance(dataset_type_list, list):
|
36 |
+
dataset_type_list = [dataset_type_list]
|
37 |
+
|
38 |
+
dataset_cls_names_list = []
|
39 |
+
dataset_instance_list = []
|
40 |
+
dataset_root_list = []
|
41 |
+
for dataset_type in dataset_type_list:
|
42 |
+
if dataset_dict.get(dataset_type, ''):
|
43 |
+
dataset_cls_names, dataset_instance, dataset_root = dataset_dict[dataset_type]
|
44 |
+
dataset_instance = dataset_instance(
|
45 |
+
clsnames=dataset_cls_names,
|
46 |
+
transform=transform,
|
47 |
+
target_transform=target_transform,
|
48 |
+
training=training
|
49 |
+
)
|
50 |
+
|
51 |
+
dataset_cls_names_list.append(dataset_cls_names)
|
52 |
+
dataset_instance_list.append(dataset_instance)
|
53 |
+
dataset_root_list.append(dataset_root)
|
54 |
+
|
55 |
+
else:
|
56 |
+
print(f'Only support {list(dataset_dict.keys())}, but entered {dataset_type}...')
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
if len(dataset_type_list) > 1:
|
60 |
+
dataset_instance = ConcatDataset(dataset_instance_list)
|
61 |
+
dataset_cls_names = dataset_cls_names_list
|
62 |
+
dataset_root = dataset_root_list
|
63 |
+
else:
|
64 |
+
dataset_instance = dataset_instance_list[0]
|
65 |
+
dataset_cls_names = dataset_cls_names_list[0]
|
66 |
+
dataset_root = dataset_root_list[0]
|
67 |
+
|
68 |
+
return dataset_cls_names, dataset_instance, dataset_root
|
dataset/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (2.67 kB). View file
|
|
dataset/__pycache__/br35h.cpython-39.pyc
ADDED
Binary file (3.38 kB). View file
|
|
dataset/__pycache__/brain_mri.cpython-39.pyc
ADDED
Binary file (3.38 kB). View file
|
|
dataset/__pycache__/btad.cpython-39.pyc
ADDED
Binary file (3.59 kB). View file
|
|
dataset/__pycache__/clinicdb.cpython-39.pyc
ADDED
Binary file (3.74 kB). View file
|
|
dataset/__pycache__/colondb.cpython-39.pyc
ADDED
Binary file (3.6 kB). View file
|
|
dataset/__pycache__/dagm.cpython-39.pyc
ADDED
Binary file (3.66 kB). View file
|
|
dataset/__pycache__/dtd.cpython-39.pyc
ADDED
Binary file (3.7 kB). View file
|
|
dataset/__pycache__/headct.cpython-39.pyc
ADDED
Binary file (3.37 kB). View file
|
|
dataset/__pycache__/isic.cpython-39.pyc
ADDED
Binary file (3.56 kB). View file
|
|
dataset/__pycache__/mpdd.cpython-39.pyc
ADDED
Binary file (3.63 kB). View file
|
|
dataset/__pycache__/mvtec.cpython-39.pyc
ADDED
Binary file (3.71 kB). View file
|
|
dataset/__pycache__/sdd.cpython-39.pyc
ADDED
Binary file (3.57 kB). View file
|
|
dataset/__pycache__/tn3k.cpython-39.pyc
ADDED
Binary file (3.56 kB). View file
|
|
dataset/__pycache__/visa.cpython-39.pyc
ADDED
Binary file (2.59 kB). View file
|
|
dataset/base_dataset.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Base class for our zero-shot anomaly detection dataset
|
3 |
+
"""
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
import torch.utils.data as data
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
from config import DATA_ROOT
|
12 |
+
|
13 |
+
|
14 |
+
class DataSolver:
|
15 |
+
def __init__(self, root, clsnames):
|
16 |
+
self.root = root
|
17 |
+
self.clsnames = clsnames
|
18 |
+
self.path = os.path.join(root, 'meta.json')
|
19 |
+
|
20 |
+
def run(self):
|
21 |
+
with open(self.path, 'r') as f:
|
22 |
+
info = json.load(f)
|
23 |
+
|
24 |
+
info_required = dict(train={}, test={})
|
25 |
+
for cls in self.clsnames:
|
26 |
+
for k in info.keys():
|
27 |
+
info_required[k][cls] = info[k][cls]
|
28 |
+
|
29 |
+
return info_required
|
30 |
+
|
31 |
+
|
32 |
+
class BaseDataset(data.Dataset):
|
33 |
+
def __init__(self, clsnames, transform, target_transform, root, aug_rate=0., training=True):
|
34 |
+
self.root = root
|
35 |
+
self.transform = transform
|
36 |
+
self.target_transform = target_transform
|
37 |
+
self.aug_rate = aug_rate
|
38 |
+
self.training = training
|
39 |
+
self.data_all = []
|
40 |
+
self.cls_names = clsnames
|
41 |
+
|
42 |
+
solver = DataSolver(root, clsnames)
|
43 |
+
meta_info = solver.run()
|
44 |
+
|
45 |
+
self.meta_info = meta_info['test'] # Only utilize the test dataset for both training and testing
|
46 |
+
for cls_name in self.cls_names:
|
47 |
+
self.data_all.extend(self.meta_info[cls_name])
|
48 |
+
|
49 |
+
self.length = len(self.data_all)
|
50 |
+
|
51 |
+
def __len__(self):
|
52 |
+
return self.length
|
53 |
+
|
54 |
+
def combine_img(self, cls_name):
|
55 |
+
"""
|
56 |
+
From April-GAN: https://github.com/ByChelsea/VAND-APRIL-GAN
|
57 |
+
Here we combine four images into a single image for data augmentation.
|
58 |
+
"""
|
59 |
+
img_info = random.sample(self.meta_info[cls_name], 4)
|
60 |
+
|
61 |
+
img_ls = []
|
62 |
+
mask_ls = []
|
63 |
+
|
64 |
+
for data in img_info:
|
65 |
+
img_path = os.path.join(self.root, data['img_path'])
|
66 |
+
mask_path = os.path.join(self.root, data['mask_path'])
|
67 |
+
|
68 |
+
img = Image.open(img_path).convert('RGB')
|
69 |
+
img_ls.append(img)
|
70 |
+
|
71 |
+
if not data['anomaly']:
|
72 |
+
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
|
73 |
+
else:
|
74 |
+
img_mask = np.array(Image.open(mask_path).convert('L')) > 0
|
75 |
+
img_mask = Image.fromarray(img_mask.astype(np.uint8) * 255, mode='L')
|
76 |
+
|
77 |
+
mask_ls.append(img_mask)
|
78 |
+
|
79 |
+
# Image
|
80 |
+
image_width, image_height = img_ls[0].size
|
81 |
+
result_image = Image.new("RGB", (2 * image_width, 2 * image_height))
|
82 |
+
for i, img in enumerate(img_ls):
|
83 |
+
row = i // 2
|
84 |
+
col = i % 2
|
85 |
+
x = col * image_width
|
86 |
+
y = row * image_height
|
87 |
+
result_image.paste(img, (x, y))
|
88 |
+
|
89 |
+
# Mask
|
90 |
+
result_mask = Image.new("L", (2 * image_width, 2 * image_height))
|
91 |
+
for i, img in enumerate(mask_ls):
|
92 |
+
row = i // 2
|
93 |
+
col = i % 2
|
94 |
+
x = col * image_width
|
95 |
+
y = row * image_height
|
96 |
+
result_mask.paste(img, (x, y))
|
97 |
+
|
98 |
+
return result_image, result_mask
|
99 |
+
|
100 |
+
def __getitem__(self, index):
|
101 |
+
data = self.data_all[index]
|
102 |
+
img_path = os.path.join(self.root, data['img_path'])
|
103 |
+
mask_path = os.path.join(self.root, data['mask_path'])
|
104 |
+
cls_name = data['cls_name']
|
105 |
+
anomaly = data['anomaly']
|
106 |
+
random_number = random.random()
|
107 |
+
|
108 |
+
if self.training and random_number < self.aug_rate:
|
109 |
+
img, img_mask = self.combine_img(cls_name)
|
110 |
+
else:
|
111 |
+
if img_path.endswith('.tif'):
|
112 |
+
img = cv2.imread(img_path)
|
113 |
+
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
114 |
+
else:
|
115 |
+
img = Image.open(img_path).convert('RGB')
|
116 |
+
if anomaly == 0:
|
117 |
+
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
|
118 |
+
else:
|
119 |
+
if data['mask_path']:
|
120 |
+
img_mask = np.array(Image.open(mask_path).convert('L')) > 0
|
121 |
+
img_mask = Image.fromarray(img_mask.astype(np.uint8) * 255, mode='L')
|
122 |
+
else:
|
123 |
+
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
|
124 |
+
# Transforms
|
125 |
+
if self.transform is not None:
|
126 |
+
img = self.transform(img)
|
127 |
+
if self.target_transform is not None and img_mask is not None:
|
128 |
+
img_mask = self.target_transform(img_mask)
|
129 |
+
if img_mask is None:
|
130 |
+
img_mask = []
|
131 |
+
|
132 |
+
return {
|
133 |
+
'img': img,
|
134 |
+
'img_mask': img_mask,
|
135 |
+
'cls_name': cls_name,
|
136 |
+
'anomaly': anomaly,
|
137 |
+
'img_path': img_path
|
138 |
+
}
|
dataset/br35h.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection'''
|
6 |
+
|
7 |
+
Br35h_CLS_NAMES = [
|
8 |
+
'br35h',
|
9 |
+
]
|
10 |
+
Br35h_ROOT = os.path.join(DATA_ROOT, 'Br35h_anomaly_detection')
|
11 |
+
|
12 |
+
class Br35hDataset(BaseDataset):
|
13 |
+
def __init__(self, transform, target_transform, clsnames=Br35h_CLS_NAMES, aug_rate=0.0, root=Br35h_ROOT, training=True):
|
14 |
+
super(Br35hDataset, self).__init__(
|
15 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
16 |
+
root=root, aug_rate=aug_rate, training=training
|
17 |
+
)
|
18 |
+
|