from typing import Union, List, Optional import numpy as np import torch from pkg_resources import packaging from torch import nn from torch.nn import functional as F from .clip_model import CLIP from .simple_tokenizer import SimpleTokenizer as _Tokenizer from sklearn.cluster import KMeans class ProjectLayer(nn.Module): def __init__(self, input_dim, output_dim, num_replicas, stack=False, is_array=True): super(ProjectLayer, self).__init__() self.head = nn.ModuleList([nn.Linear(input_dim, output_dim) for _ in range(num_replicas)]) self.num_replicas = num_replicas self.stack = stack self.is_array = is_array def forward(self, tokens): out_tokens = [] for i in range(self.num_replicas): if self.is_array: temp = self.head[i](tokens[i][:, 1:, :]) # for ViT, we exclude the class token and only extract patch tokens here. else: temp = self.head[i](tokens) out_tokens.append(temp) if self.stack: out_tokens = torch.stack(out_tokens, dim=1) return out_tokens class PromptLayer(nn.Module): def __init__(self, channel, length, depth, is_text, prompting_type, enabled=True): super(PromptLayer, self).__init__() self.channel = channel self.length = length self.depth = depth self.is_text = is_text self.enabled = enabled self.prompting_type = prompting_type if self.enabled: # only when enabled, the parameters should be constructed if 'S' in prompting_type: # static prompts # learnable self.static_prompts = nn.ParameterList( [nn.Parameter(torch.empty(self.length, self.channel)) for _ in range(self.depth)]) for single_para in self.static_prompts: nn.init.normal_(single_para, std=0.02) if 'D' in prompting_type: # dynamic prompts self.dynamic_prompts = [0.] # place holder def set_dynamic_prompts(self, dynamic_prompts): self.dynamic_prompts = dynamic_prompts def forward_text(self, resblock, indx, x, k_x=None, v_x=None, attn_mask: Optional[torch.Tensor] = None): if self.enabled: length = self.length # only prompt the first J layers if indx < self.depth: if 'S' in self.prompting_type and 'D' in self.prompting_type: # both static_prompts = self.static_prompts[indx].unsqueeze(0).expand(x.shape[1], -1, -1) textual_context = self.dynamic_prompts + static_prompts elif 'S' in self.prompting_type: # static static_prompts = self.static_prompts[indx].unsqueeze(0).expand(x.shape[1], -1, -1) textual_context = static_prompts elif 'D' in self.prompting_type: # dynamic textual_context = self.dynamic_prompts else: print('You should at least choose one type of prompts when the prompting branches are not none.') raise NotImplementedError if indx == 0: # for the first layer x = x else: if indx < self.depth: # replace with learnalbe tokens prefix = x[:1, :, :] suffix = x[1 + length:, :, :] textual_context = textual_context.permute(1, 0, 2).half() x = torch.cat([prefix, textual_context, suffix], dim=0) else: # keep the same x = x else: x = x x, attn_tmp = resblock(q_x=x, k_x=k_x, v_x= v_x, attn_mask=attn_mask) return x, attn_tmp def forward_visual(self, resblock, indx, x, k_x=None, v_x=None, attn_mask: Optional[torch.Tensor] = None): if self.enabled: length = self.length # only prompt the first J layers if indx < self.depth: if 'S' in self.prompting_type and 'D' in self.prompting_type: # both static_prompts = self.static_prompts[indx].unsqueeze(0).expand(x.shape[1], -1, -1) visual_context = self.dynamic_prompts + static_prompts elif 'S' in self.prompting_type: # static static_prompts = self.static_prompts[indx].unsqueeze(0).expand(x.shape[1], -1, -1) visual_context = static_prompts elif 'D' in self.prompting_type: # dynamic visual_context = self.dynamic_prompts else: print('You should at least choose one type of prompts when the prompting branches are not none.') raise NotImplementedError if indx == 0: # for the first layer visual_context = visual_context.permute(1, 0, 2).half() x = torch.cat([x, visual_context], dim=0) else: if indx < self.depth: # replace with learnalbe tokens prefix = x[0:x.shape[0] - length, :, :] visual_context = visual_context.permute(1, 0, 2).half() x = torch.cat([prefix, visual_context], dim=0) else: # keep the same x = x else: x = x x, attn_tmp = resblock(q_x=x, k_x=k_x, v_x= v_x, attn_mask=attn_mask) if self.enabled: tokens = x[:x.shape[0] - length, :, :] else: tokens = x return x, tokens, attn_tmp def forward(self, resblock, indx, x, k_x=None, v_x=None, attn_mask: Optional[torch.Tensor] = None): if self.is_text: return self.forward_text(resblock, indx, x, k_x, v_x, attn_mask) else: return self.forward_visual(resblock, indx, x, k_x, v_x, attn_mask) class TextEmbebddingLayer(nn.Module): def __init__(self, fixed): super(TextEmbebddingLayer, self).__init__() self.tokenizer = _Tokenizer() self.ensemble_text_features = {} self.prompt_normal = ['{}', 'flawless {}', 'perfect {}', 'unblemished {}', '{} without flaw', '{} without defect', '{} without damage'] self.prompt_abnormal = ['damaged {}', 'broken {}', '{} with flaw', '{} with defect', '{} with damage'] self.prompt_state = [self.prompt_normal, self.prompt_abnormal] self.prompt_templates = ['a bad photo of a {}.', 'a low resolution photo of the {}.', 'a bad photo of the {}.', 'a cropped photo of the {}.', ] self.fixed = fixed def tokenize(self, texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[ torch.IntTensor, torch.LongTensor]: if isinstance(texts, str): texts = [texts] sot_token = self.tokenizer.encoder["<|startoftext|>"] eot_token = self.tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + self.tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result ## TODO: text layeer is not compitable with multiple batches... def forward(self, model, texts, device): text_feature_list = [] for indx, text in enumerate(texts): if self.fixed: if self.ensemble_text_features.get(text) is None: text_features = self.encode_text(model, text, device) self.ensemble_text_features[text] = text_features else: text_features = self.ensemble_text_features[text] else: text_features = self.encode_text(model, text, device) self.ensemble_text_features[text] = text_features text_feature_list.append(text_features) text_features = torch.stack(text_feature_list, dim=0) text_features = F.normalize(text_features, dim=1) return text_features def encode_text(self, model, text, device): text_features = [] for i in range(len(self.prompt_state)): text = text.replace('-', ' ') prompted_state = [state.format(text) for state in self.prompt_state[i]] prompted_sentence = [] for s in prompted_state: for template in self.prompt_templates: prompted_sentence.append(template.format(s)) prompted_sentence = self.tokenize(prompted_sentence, context_length=77).to(device) class_embeddings = model.encode_text(prompted_sentence) class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) class_embedding = class_embeddings.mean(dim=0) class_embedding /= class_embedding.norm() text_features.append(class_embedding) text_features = torch.stack(text_features, dim=1) return text_features class HybridSemanticFusion(nn.Module): def __init__(self, k_clusters): super(HybridSemanticFusion, self).__init__() self.k_clusters = k_clusters self.n_aggregate_patch_tokens = k_clusters * 5 self.cluster_performer = KMeans(n_clusters=self.k_clusters, n_init="auto") # @torch.no_grad() def forward(self, patch_tokens: list, anomaly_maps: list): anomaly_map = torch.mean(torch.stack(anomaly_maps, dim=1), dim=1) anomaly_map = torch.softmax(anomaly_map, dim=2)[:, :, 1] # B, L # extract most abnormal feats selected_abnormal_tokens = [] k = min(anomaly_map.shape[1], self.n_aggregate_patch_tokens) top_k_indices = torch.topk(anomaly_map, k=k, dim=1).indices for layer in range(len(patch_tokens)): selected_tokens = patch_tokens[layer]. \ gather(dim=1, index=top_k_indices.unsqueeze(-1). expand(-1, -1, patch_tokens[layer].shape[-1])) selected_abnormal_tokens.append(selected_tokens) # use kmeans to extract these centriods # Stack the data_preprocess stacked_data = torch.cat(selected_abnormal_tokens, dim=2) batch_cluster_centers = [] # Perform K-Means clustering for b in range(stacked_data.shape[0]): cluster_labels = self.cluster_performer.fit_predict(stacked_data[b, :, :].detach().cpu().numpy()) # Initialize a list to store the cluster centers cluster_centers = [] # Extract cluster centers for each cluster for cluster_id in range(self.k_clusters): collected_cluster_data = [] for abnormal_tokens in selected_abnormal_tokens: cluster_data = abnormal_tokens[b, :, :][cluster_labels == cluster_id] collected_cluster_data.append(cluster_data) collected_cluster_data = torch.cat(collected_cluster_data, dim=0) cluster_center = torch.mean(collected_cluster_data, dim=0, keepdim=True) cluster_centers.append(cluster_center) # Normalize the cluster centers cluster_centers = torch.cat(cluster_centers, dim=0) cluster_centers = torch.mean(cluster_centers, dim=0) batch_cluster_centers.append(cluster_centers) batch_cluster_centers = torch.stack(batch_cluster_centers, dim=0) batch_cluster_centers = F.normalize(batch_cluster_centers, dim=1) return batch_cluster_centers # # preprocess # # compute the anomaly map # anomaly_map = torch.mean(torch.stack(anomaly_maps, dim=1), dim=1) # anomaly_map = torch.softmax(anomaly_map, dim=2)[:, :, 1] # B, L # # # compute the average multi-hierarchy patch embeddings # avg_patch_tokens = torch.mean(torch.stack(patch_tokens, dim=0), dim=0) # B, L, C # # # Initialize a list to store the centroids of clusters with the largest anomaly scores # cluster_centroids = [] # # # loop across the batch size # for b in range(avg_patch_tokens.shape[0]): # # step1: group features into clusters # cluster_labels = self.cluster_performer.fit_predict(avg_patch_tokens[b, :, :].detach().cpu().numpy()) # # # step2: compute the anomaly scores for individual clusters via the anomaly map # # Convert cluster labels back to tensor # cluster_labels = torch.tensor(cluster_labels).to(avg_patch_tokens.device) # cluster_anomaly_scores = {} # for label in torch.unique(cluster_labels): # cluster_indices = torch.where(cluster_labels == label)[0] # cluster_anomaly_scores[label.item()] = anomaly_map[b, cluster_indices].mean().item() # # # step3: select the cluster with the largest anomaly score and then compute its centroid by averaging the # # corresponding avg_patch_tokens # # Find the cluster with the largest anomaly score # largest_anomaly_cluster = max(cluster_anomaly_scores, key=cluster_anomaly_scores.get) # # # Get the indices of the tokens belonging to the largest anomaly cluster # largest_anomaly_cluster_indices = torch.where(cluster_labels == largest_anomaly_cluster)[0] # # # Compute the centroid of the largest anomaly cluster by averaging the corresponding avg_patch_tokens # centroid = avg_patch_tokens[b, largest_anomaly_cluster_indices, :].mean(dim=0) # # # Append the centroid to the list of cluster centroids # cluster_centroids.append(centroid) # # # Convert the list of centroids to a tensor # cluster_centroids = torch.stack(cluster_centroids, dim=0) # cluster_centroids = F.normalize(cluster_centroids, dim=1) # return cluster_centroids class AdaCLIP(nn.Module): def __init__(self, freeze_clip: CLIP, text_channel: int, visual_channel: int, prompting_length: int, prompting_depth: int, prompting_branch: str, prompting_type: str, use_hsf: bool, k_clusters: int, output_layers: list, device: str, image_size: int): super(AdaCLIP, self).__init__() self.freeze_clip = freeze_clip self.visual = self.freeze_clip.visual self.transformer = self.freeze_clip.transformer self.token_embedding = self.freeze_clip.token_embedding self.positional_embedding = self.freeze_clip.positional_embedding self.ln_final = self.freeze_clip.ln_final self.text_projection = self.freeze_clip.text_projection self.attn_mask = self.freeze_clip.attn_mask self.output_layers = output_layers self.prompting_branch = prompting_branch self.prompting_type = prompting_type self.prompting_depth = prompting_depth self.prompting_length = prompting_length self.use_hsf = use_hsf self.k_clusters = k_clusters if 'L' in self.prompting_branch: self.enable_text_prompt = True else: self.enable_text_prompt = False if 'V' in self.prompting_branch: self.enable_visual_prompt = True else: self.enable_visual_prompt = False self.text_embedding_layer = TextEmbebddingLayer(fixed=(not self.enable_text_prompt)) self.text_prompter = PromptLayer(text_channel, prompting_length, prompting_depth, is_text=True, prompting_type=prompting_type, enabled=self.enable_text_prompt) self.visual_prompter = PromptLayer(visual_channel, prompting_length, prompting_depth, is_text=False, prompting_type=prompting_type, enabled=self.enable_visual_prompt) self.patch_token_layer = ProjectLayer( visual_channel, text_channel, len(output_layers), stack=False, is_array=True ) self.cls_token_layer = ProjectLayer( text_channel, text_channel, 1, stack=False, is_array=False ) if 'D' in self.prompting_type: # dynamic prompts self.dynamic_visual_prompt_generator = ProjectLayer(text_channel, visual_channel, prompting_length, stack=True, is_array=False) self.dynamic_text_prompt_generator = ProjectLayer(text_channel, text_channel, prompting_length, stack=True, is_array=False) if self.use_hsf: self.HSF = HybridSemanticFusion(k_clusters) self.image_size = image_size self.device = device def generate_and_set_dynamic_promtps(self, image): with torch.no_grad(): # extract image features image_features, _ = self.visual.forward(image, self.output_layers) dynamic_visual_prompts = self.dynamic_visual_prompt_generator(image_features) dynamic_text_prompts = self.dynamic_text_prompt_generator(image_features) self.visual_prompter.set_dynamic_prompts(dynamic_visual_prompts) self.text_prompter.set_dynamic_prompts(dynamic_text_prompts) def encode_image(self, image): x = image # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1 if self.visual.input_patchnorm: # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)') x = x.reshape(x.shape[0], x.shape[1], self.visual.grid_size[0], self.visual.patch_size[0], self.visual.grid_size[1], self.visual.patch_size[1]) x = x.permute(0, 2, 4, 1, 3, 5) x = x.reshape(x.shape[0], self.visual.grid_size[0] * self.visual.grid_size[1], -1) x = self.visual.patchnorm_pre_ln(x) x = self.visual.conv1(x) else: x = self.visual.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] # class embeddings and positional embeddings x = torch.cat( [self.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.visual.positional_embedding.to(x.dtype) # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in x = self.visual.patch_dropout(x) x = self.visual.ln_pre(x) patch_embedding = x x = x.permute(1, 0, 2) # NLD -> LND patch_tokens = [] for indx, r in enumerate(self.visual.transformer.resblocks): x, tokens, attn_tmp = self.visual_prompter(r, indx, x, k_x=None, v_x=None, attn_mask=None) if (indx + 1) in self.output_layers: patch_tokens.append(tokens) x = x.permute(1, 0, 2) # LND -> NLD patch_tokens = [patch_tokens[t].permute(1, 0, 2) for t in range(len(patch_tokens))] # LND -> NLD if self.visual.attn_pool is not None: x = self.visual.attn_pool(x) x = self.visual.ln_post(x) pooled, tokens = self.visual._global_pool(x) else: pooled, tokens = self.visual._global_pool(x) pooled = self.visual.ln_post(pooled) if self.visual.proj is not None: pooled = pooled @ self.visual.proj return pooled, patch_tokens, patch_embedding def proj_visual_tokens(self, image_features, patch_tokens): # for patch tokens proj_patch_tokens = self.patch_token_layer(patch_tokens) for layer in range(len(proj_patch_tokens)): proj_patch_tokens[layer] /= proj_patch_tokens[layer].norm(dim=-1, keepdim=True) # for cls tokens proj_cls_tokens = self.cls_token_layer(image_features)[0] proj_cls_tokens /= proj_cls_tokens.norm(dim=-1, keepdim=True) return proj_cls_tokens, proj_patch_tokens def encode_text(self, text): cast_dtype = self.transformer.get_cast_dtype() x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.to(cast_dtype) x = x.permute(1, 0, 2) # NLD -> LND for indx, r in enumerate(self.transformer.resblocks): # add prompt here x, attn_tmp = self.text_prompter(r, indx, x, k_x=None, v_x=None, attn_mask=self.attn_mask) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def visual_text_similarity(self, image_feature, patch_token, text_feature, aggregation): anomaly_maps = [] for layer in range(len(patch_token)): anomaly_map = (100.0 * patch_token[layer] @ text_feature) anomaly_maps.append(anomaly_map) if self.use_hsf: alpha = 0.2 clustered_feature = self.HSF.forward(patch_token, anomaly_maps) # aggregate the class token and the clustered features for more comprehensive information cur_image_feature = alpha * clustered_feature + (1 - alpha) * image_feature cur_image_feature = F.normalize(cur_image_feature, dim=1) else: cur_image_feature = image_feature anomaly_score = (100.0 * cur_image_feature.unsqueeze(1) @ text_feature) anomaly_score = anomaly_score.squeeze(1) anomaly_score = torch.softmax(anomaly_score, dim=1) # NOTE: this bilinear interpolation is not unreproducible and may occasionally lead to unstable ZSAD performance. for i in range(len(anomaly_maps)): B, L, C = anomaly_maps[i].shape H = int(np.sqrt(L)) anomaly_maps[i] = anomaly_maps[i].permute(0, 2, 1).view(B, 2, H, H) anomaly_maps[i] = F.interpolate(anomaly_maps[i], size=self.image_size, mode='bilinear', align_corners=True) if aggregation: # in the test stage, we firstly aggregate logits from all hierarchies and then do the softmax normalization anomaly_map = torch.mean(torch.stack(anomaly_maps, dim=1), dim=1) anomaly_map = torch.softmax(anomaly_map, dim=1) anomaly_map = (anomaly_map[:, 1:, :, :] + 1 - anomaly_map[:, 0:1, :, :]) / 2.0 anomaly_score = anomaly_score[:, 1] return anomaly_map, anomaly_score else: # otherwise, we do the softmax normalization for individual hierarchies for i in range(len(anomaly_maps)): anomaly_maps[i] = torch.softmax(anomaly_maps[i], dim=1) return anomaly_maps, anomaly_score def extract_feat(self, image, cls_name): if 'D' in self.prompting_type: self.generate_and_set_dynamic_promtps(image) # generate and set dynamic prompts for corresponding prompters if self.enable_visual_prompt: image_features, patch_tokens, _ = self.encode_image(image) else: with torch.no_grad(): image_features, patch_tokens, _ = self.encode_image(image) if self.enable_text_prompt: text_features = self.text_embedding_layer(self, cls_name, self.device) else: with torch.no_grad(): text_features = self.text_embedding_layer(self, cls_name, self.device) proj_cls_tokens, proj_patch_tokens = self.proj_visual_tokens(image_features, patch_tokens) return proj_cls_tokens, proj_patch_tokens, text_features @torch.cuda.amp.autocast() def forward(self, image, cls_name, aggregation=True): # extract features for images and texts image_features, patch_tokens, text_features = self.extract_feat(image, cls_name) anomaly_map, anomaly_score = self.visual_text_similarity(image_features, patch_tokens, text_features, aggregation) if aggregation: anomaly_map = anomaly_map # tensor anomaly_score = anomaly_score anomaly_map = anomaly_map.squeeze(1) return anomaly_map, anomaly_score else: anomaly_maps = anomaly_map # list anomaly_score = anomaly_score return anomaly_maps, anomaly_score