Spaces:
Running
Running
File size: 19,079 Bytes
32faf2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import cv2
import numpy as np
import torch
from PIL import Image
# Grounding DINO, slightly modified from original repo
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from SAM.segment_anything import build_sam, SamPredictor
# ImageNet pretrained feature extractor
from .modelinet import ModelINet
class Model(torch.nn.Module):
def __init__(self,
## DINO
dino_config_file,
dino_checkpoint,
## SAM
sam_checkpoint,
## Parameters
box_threshold,
text_threshold,
## Others
out_size=256,
device='cuda',
):
'''
Args:
dino_config_file: the config file for DINO
dino_checkpoint: the path of checkpoint for DINO
sam_checkpoint: the path of checkpoint for SAM
box_threshold: the threshold for box filter
text_threshold: the threshold for box filter
out_size: the desired output resolution of anomaly map
device: the running device, e.g, 'cuda:0'
NOTE:
1. In our published paper, the property prompt P^P is applied to R (region).
Actually, we apply P^P to bounding box-level region R^B in this repo.
2. We haven't added IoU constraint in this repo.
3. This module only accepts BS=1.
'''
super(Model, self).__init__()
# Build Model
self.anomaly_region_generator = self.load_dino(dino_config_file, dino_checkpoint, device=device)
self.anomaly_region_refiner = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
self.transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
self.visual_saliency_extractor = ModelINet(device=device)
self.pixel_mean = [123.675, 116.28, 103.53]
self.pixel_std = [58.395, 57.12, 57.375]
# Parameters
self.box_threshold = box_threshold
self.text_threshold = text_threshold
# Others
self.out_size = out_size
self.device = device
self.is_sam_set = False
def load_dino(self, model_config_path, model_checkpoint_path, device) -> torch.nn.Module:
'''
Args:
model_config_path:
model_checkpoint_path:
device:
Returns:
'''
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
_ = model.eval()
model = model.to(device)
return model
def get_grounding_output(self, image, caption, device="cpu") -> (torch.Tensor, torch.Tensor, str):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
image = image.to(device)
with torch.no_grad():
outputs = self.anomaly_region_generator(image[None], captions=[caption])
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
return boxes, logits, caption
def set_ensemble_text_prompts(self, text_prompt_list: list, verbose=False) -> None:
self.defect_prompt_list = [f[0] for f in text_prompt_list]
self.filter_prompt_list = [f[1] for f in text_prompt_list]
if verbose:
print('used ensemble text prompts ===========')
for d, t in zip(self.defect_prompt_list, self.filter_prompt_list):
print(f'det prompts: {d}')
print(f'filtered background: {t}')
print('======================================')
def set_property_text_prompts(self, property_prompts, verbose=False) -> None:
self.object_prompt = property_prompts.split(' ')[7]
self.object_number = int(property_prompts.split(' ')[5])
self.k_mask = int(property_prompts.split(' ')[12])
self.defect_area_threshold = float(property_prompts.split(' ')[19])
self.object_max_area = 1. / self.object_number
self.object_min_area = 0.
self.similar = property_prompts.split(' ')[6]
if verbose:
print(f'{self.object_prompt}, '
f'{self.object_number}, '
f'{self.k_mask}, '
f'{self.defect_area_threshold}, '
f'{self.object_max_area}, '
f'{self.object_min_area}')
def ensemble_text_guided_mask_proposal(self, image, object_phrase_list, filtered_phrase_list,
object_max_area, object_min_area,
bbox_score_thr, text_score_thr):
size = image.shape[:2]
H, W = size[0], size[1]
dino_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
dino_image, _ = self.transform(dino_image, None) # 3, h, w
if self.is_sam_set == False:
self.anomaly_region_refiner.set_image(image)
self.is_sam_set = True
ensemble_boxes = []
ensemble_logits = []
ensemble_phrases = []
max_box_area = 0.
for object_phrase, filtered_phrase in zip(object_phrase_list, filtered_phrase_list):
########## language prompts for region proposal
boxes, logits, object_phrase = self.text_guided_region_proposal(dino_image, object_phrase)
########## property prompts for region filter
boxes_filtered, logits_filtered, pred_phrases = self.bbox_suppression(boxes, logits, object_phrase,
filtered_phrase,
bbox_score_thr, text_score_thr,
object_max_area, object_min_area)
## in case there is no box left
if boxes_filtered is not None:
ensemble_boxes += [boxes_filtered]
ensemble_logits += logits_filtered
ensemble_phrases += pred_phrases
boxes_area = boxes_filtered[:, 2] * boxes_filtered[:, 3]
if boxes_area.max() > max_box_area:
max_box_area = boxes_area.max()
if ensemble_boxes != []:
ensemble_boxes = torch.cat(ensemble_boxes, dim=0)
ensemble_logits = np.stack(ensemble_logits, axis=0)
# denormalize the bbox
for i in range(ensemble_boxes.size(0)):
ensemble_boxes[i] = ensemble_boxes[i] * torch.Tensor([W, H, W, H]).to(self.device)
ensemble_boxes[i][:2] -= ensemble_boxes[i][2:] / 2
ensemble_boxes[i][2:] += ensemble_boxes[i][:2]
# region 2 mask
masks, logits = self.region_refine(ensemble_boxes, ensemble_logits, H, W)
else: # in case there is no box left
masks = [np.zeros((H, W), dtype=bool)]
logits = [0]
max_box_area = 1
return masks, logits, max_box_area
def text_guided_region_proposal(self, dino_image, object_phrase):
# directly use the output of Grounding DINO
boxes, logits, caption = self.get_grounding_output(
dino_image, object_phrase, device=self.device
)
return boxes, logits, caption
def bbox_suppression(self, boxes, logits, object_phrase, filtered_phrase,
bbox_score_thr, text_score_thr,
object_max_area, object_min_area,
with_logits=True):
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
boxes_area = boxes_filt[:, 2] * boxes_filt[:, 3]
# filter the bounding boxes according to the box similarity and the area
# strategy1: bbox score thr
box_score_mask = logits_filt.max(dim=1)[0] > bbox_score_thr
# strategy2: max area
box_max_area_mask = boxes_area < (object_max_area)
# strategy3: min area
box_min_area_mask = boxes_area > (object_min_area)
filt_mask = torch.bitwise_and(box_score_mask, box_max_area_mask)
filt_mask = torch.bitwise_and(filt_mask, box_min_area_mask)
if torch.sum(filt_mask) == 0: # in case there are no matches
return None, None, None
else:
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# get phrase
tokenlizer = self.anomaly_region_generator.tokenizer
tokenized = tokenlizer(object_phrase)
# build pred
pred_phrases = []
boxes_filtered = []
logits_filtered = []
for logit, box in zip(logits_filt, boxes_filt):
# strategy4: text score thr
pred_phrase = get_phrases_from_posmap(logit > text_score_thr, tokenized, tokenlizer)
# strategy5: filter background
if pred_phrase.count(filtered_phrase) > 0: # we don't want to predict the category
continue
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
boxes_filtered.append(box)
logits_filtered.append(logit.max().item())
if boxes_filtered == []:
return None, None, None
boxes_filtered = torch.stack(boxes_filtered, dim=0)
return boxes_filtered, logits_filtered, pred_phrases
def region_refine(self, boxes_filtered, logits_filtered, H, W):
if boxes_filtered == []:
return [np.zeros((H, W), dtype=bool)], [0]
transformed_boxes = self.anomaly_region_refiner.transform.apply_boxes_torch(boxes_filtered, (H, W)).to(
self.device)
masks, _, _ = self.anomaly_region_refiner.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
masks = masks.cpu().squeeze(1).numpy()
return masks, logits_filtered
def saliency_prompting(self, image, object_masks, defect_masks, defect_logits):
###### Self Similarity Calculation
similarity_map = self.visual_saliency_calculation(image, object_masks)
###### Rescore
defect_masks, defect_rescores = self.rescore(defect_masks, defect_logits, similarity_map)
return defect_masks, defect_rescores, similarity_map
def single_object_similarity(self, image, object_masks):
# use GPU version...
# only consider the feautures of objects
# as calculate whole image similarity is memory costly, we use a small resolution here...
self.visual_saliency_extractor.set_img_size(256)
resize_image = cv2.resize(image, (256, 256))
features, ratio_h, ratio_w = self.visual_saliency_extractor(resize_image)
B, C, H, W = features.shape
assert B == 1
features_flattern = features.view(B * C, H * W)
features_self_similarity = features_flattern.T @ features_flattern
features_self_similarity = 0.5 * (1 - features_self_similarity)
features_self_similarity = features_self_similarity.sort(dim=1, descending=True)[0]
# by default we use N=400 for saliency calculation
features_self_similarity = torch.mean(features_self_similarity[:, :400], dim=1)
heatMap2 = features_self_similarity.view(H, W).cpu().numpy()
mask_anomaly_scores = cv2.resize(heatMap2, (image.shape[1], image.shape[0]))
# mask_anomaly_scores[~object_masks] = 0.
return mask_anomaly_scores
def visual_saliency_calculation(self, image, object_masks):
if self.object_number == 1: # use single-instance strategy
mask_area = np.sum(object_masks, axis=(1, 2))
object_mask = object_masks[mask_area.argmax(), :, :]
self_similarity_anomaly_map = self.single_object_similarity(image, object_mask)
return self_similarity_anomaly_map
else: # use multi-instance strategy
resize_image = cv2.resize(image, (1024, 1024))
features, ratio_h, ratio_w = self.visual_saliency_extractor(resize_image)
feature_size = features.shape[2:]
object_masks_clone = object_masks.copy()
object_masks_clone = object_masks_clone.astype(np.int32)
resize_object_masks = []
for object_mask in object_masks_clone:
resize_object_masks.append(cv2.resize(object_mask, feature_size, interpolation=cv2.INTER_NEAREST))
mask_anomaly_scores = []
for indx in range(len(resize_object_masks)):
other_object_masks1 = resize_object_masks[:indx]
other_object_masks2 = resize_object_masks[indx + 1:]
other_object_masks = other_object_masks1 + other_object_masks2
one_mask_feature, \
one_feature_location, \
other_mask_features = self.region_feature_extraction(
features,
resize_object_masks[indx],
other_object_masks
)
similarity = one_mask_feature @ other_mask_features.T # (H*W, N)
similarity = similarity.max(dim=1)[0]
anomaly_score = 0.5 * (1. - similarity)
anomaly_score = anomaly_score.cpu().numpy()
mask_anomaly_score = np.zeros(feature_size)
for location, score in zip(one_feature_location, anomaly_score):
mask_anomaly_score[location[0], location[1]] = score
mask_anomaly_scores.append(mask_anomaly_score)
mask_anomaly_scores = np.stack(mask_anomaly_scores, axis=0)
mask_anomaly_scores = np.max(mask_anomaly_scores, axis=0)
mask_anomaly_scores = cv2.resize(mask_anomaly_scores, (image.shape[1], image.shape[0]))
return mask_anomaly_scores
def region_feature_extraction(self, features, one_object_mask, other_object_masks):
'''
Use ImageNet pretraine network to extract features for mask
Args:
features:
one_object_mask:
other_object_masks:
Returns:
'''
features_clone = features.clone()
one_mask_feature = []
one_feature_location = []
for h in range(one_object_mask.shape[0]):
for w in range(one_object_mask.shape[1]):
if one_object_mask[h, w] > 0:
one_mask_feature += [features_clone[:, :, h, w].clone()]
one_feature_location += [np.array((h, w))]
features_clone[:, :, h, w] = 0.
one_feature_location = np.stack(one_feature_location, axis=0)
one_mask_feature = torch.cat(one_mask_feature, dim=0)
B, C, H, W = features_clone.shape
assert B == 1
features_clone_flattern = features_clone.view(C, -1)
other_mask_features = []
for other_object_mask in other_object_masks:
other_object_mask_flattern = other_object_mask.reshape(-1)
other_mask_feature = features_clone_flattern[:, other_object_mask_flattern > 0]
other_mask_features.append(other_mask_feature)
other_mask_features = torch.cat(other_mask_features, dim=1).T
return one_mask_feature, one_feature_location, other_mask_features
def rescore(self, defect_masks, defect_logits, similarity_map):
defect_rescores = []
for mask, logit in zip(defect_masks, defect_logits):
if similarity_map[mask].size == 0:
similarity_score = 1.
else:
similarity_score = np.exp(3 * similarity_map[mask].mean())
refined_score = logit * similarity_score
defect_rescores.append(refined_score)
defect_rescores = np.stack(defect_rescores, axis=0)
return defect_masks, defect_rescores
def confidence_prompting(self, defect_masks, defect_scores, similarity_map):
mask_indx = defect_scores.argsort()[-self.k_mask:]
filtered_masks = []
filtered_scores = []
for indx in mask_indx:
filtered_masks.append(defect_masks[indx])
filtered_scores.append(defect_scores[indx])
anomaly_map = np.zeros(defect_masks[0].shape)
weight_map = np.ones(defect_masks[0].shape)
for mask, logits in zip(filtered_masks, filtered_scores):
anomaly_map += mask * logits
weight_map += mask * 1.
anomaly_map[weight_map > 0] /= weight_map[weight_map > 0]
anomaly_map = cv2.resize(anomaly_map, (self.out_size, self.out_size))
return anomaly_map
def forward(self, image: np.ndarray):
####### Object TGMP for object detection
object_masks, object_logits, object_area = self.ensemble_text_guided_mask_proposal(
image,
[self.object_prompt],
['PlaceHolder'],
self.object_max_area,
self.object_min_area,
self.box_threshold,
self.text_threshold
)
###### Reasoning: set the anomaly area threshold according to object area
self.defect_max_area = object_area * self.defect_area_threshold
self.defect_min_area = 0.
####### language prompts and property prompts $\mathcal{P}^L$ $\mathcal{P}^S$
####### for region proposal and filter
defect_masks, defect_logits, _ = self.ensemble_text_guided_mask_proposal(
image,
self.defect_prompt_list,
self.filter_prompt_list,
self.defect_max_area,
self.defect_min_area,
self.box_threshold,
self.text_threshold
)
###### saliency prompts $\mathcal{P}^S$
defect_masks, defect_rescores, similarity_map = self.saliency_prompting(
image,
object_masks,
defect_masks,
defect_logits
)
##### confidence prompts $\mathcal{P}^C$
anomaly_map = self.confidence_prompting(defect_masks, defect_rescores, similarity_map)
self.is_sam_set = False
appendix = {'similarity_map': similarity_map}
return anomaly_map, appendix
|