Spaces:
Running
Running
import timm | |
from copy import deepcopy | |
from typing import Tuple | |
import numpy as np | |
import timm | |
import torch | |
from torch.nn import functional as F | |
from torchvision.transforms.functional import resize, to_pil_image # type: ignore | |
class ResizeLongestSide: | |
""" | |
Resizes images to longest side 'target_length', as well as provides | |
methods for resizing coordinates and boxes. Provides methods for | |
transforming both numpy array and batched torch tensors. | |
""" | |
def __init__(self, target_length: int) -> None: | |
self.target_length = target_length | |
def apply_image(self, image: np.ndarray) -> np.ndarray: | |
""" | |
Expects a numpy array with shape HxWxC in uint8 format. | |
""" | |
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) | |
return np.array(resize(to_pil_image(image), target_size)) | |
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: | |
""" | |
Expects a numpy array of length 2 in the final dimension. Requires the | |
original image size in (H, W) format. | |
""" | |
old_h, old_w = original_size | |
new_h, new_w = self.get_preprocess_shape( | |
original_size[0], original_size[1], self.target_length | |
) | |
coords = deepcopy(coords).astype(float) | |
coords[..., 0] = coords[..., 0] * (new_w / old_w) | |
coords[..., 1] = coords[..., 1] * (new_h / old_h) | |
return coords | |
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: | |
""" | |
Expects a numpy array shape Bx4. Requires the original image size | |
in (H, W) format. | |
""" | |
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) | |
return boxes.reshape(-1, 4) | |
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: | |
""" | |
Expects batched images with shape BxCxHxW and float format. This | |
transformation may not exactly match apply_image. apply_image is | |
the transformation expected by the model. | |
""" | |
# Expects an image in BCHW format. May not exactly match apply_image. | |
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) | |
return F.interpolate( | |
image, target_size, mode="bilinear", align_corners=False, antialias=True | |
) | |
def apply_coords_torch( | |
self, coords: torch.Tensor, original_size: Tuple[int, ...] | |
) -> torch.Tensor: | |
""" | |
Expects a torch tensor with length 2 in the last dimension. Requires the | |
original image size in (H, W) format. | |
""" | |
old_h, old_w = original_size | |
new_h, new_w = self.get_preprocess_shape( | |
original_size[0], original_size[1], self.target_length | |
) | |
coords = deepcopy(coords).to(torch.float) | |
coords[..., 0] = coords[..., 0] * (new_w / old_w) | |
coords[..., 1] = coords[..., 1] * (new_h / old_h) | |
return coords | |
def apply_boxes_torch( | |
self, boxes: torch.Tensor, original_size: Tuple[int, ...] | |
) -> torch.Tensor: | |
""" | |
Expects a torch tensor with shape Bx4. Requires the original image | |
size in (H, W) format. | |
""" | |
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) | |
return boxes.reshape(-1, 4) | |
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: | |
""" | |
Compute the output size given input size and target long side length. | |
""" | |
scale = long_side_length * 1.0 / max(oldh, oldw) | |
newh, neww = oldh * scale, oldw * scale | |
neww = int(neww + 0.5) | |
newh = int(newh + 0.5) | |
return (newh, neww) | |
class ModelINet(torch.nn.Module): | |
# hrnet_w32, wide_resnet50_2 | |
def __init__(self, device, backbone_name='wide_resnet50_2', out_indices=(1, 2, 3), checkpoint_path='', | |
pool_last=False): | |
super().__init__() | |
# Determine if to output features. | |
kwargs = {'features_only': True if out_indices else False} | |
if out_indices: | |
kwargs.update({'out_indices': out_indices}) | |
print(backbone_name) | |
self.device = device | |
self.backbone = timm.create_model(model_name=backbone_name, pretrained=True, checkpoint_path=checkpoint_path, | |
**kwargs) | |
self.backbone.eval() | |
self.backbone = self.backbone.to(self.device) | |
self.avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) if pool_last else None | |
self.pixel_mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).view(-1, 1, 1).to(self.device) | |
self.pixel_std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).view(-1, 1, 1).to(self.device) | |
self.img_size = 1024 | |
self.transform_size = ResizeLongestSide(self.img_size) | |
def set_img_size(self, img_size): | |
self.img_size = img_size | |
self.transform_size = ResizeLongestSide(self.img_size) | |
def preprocess(self, image: np.ndarray): | |
"""Normalize pixel values and pad to a square input.""" | |
input_image = self.transform_size.apply_image(image) | |
input_image_torch = torch.as_tensor(input_image, device=self.device) | |
x = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] | |
# Normalize colors | |
x = (x - self.pixel_mean) / self.pixel_std | |
# Pad | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
ratio_h = h / self.img_size | |
ratio_w = w / self.img_size | |
return x, ratio_h, ratio_w | |
def forward(self, x): | |
x, ratio_h, ratio_w = self.preprocess(x) | |
x = x.to(self.device) | |
# Backbone forward pass. | |
features = self.backbone(x) | |
# Adaptive average pool over the last layer. | |
if self.avg_pool: | |
fmap = features[-1] | |
fmap = self.avg_pool(fmap) | |
fmap = torch.flatten(fmap, 1) | |
features.append(fmap) | |
size_0 = features[0].shape[2:] | |
for i in range(1, len(features)): | |
features[i] = F.interpolate(features[i], size_0) | |
features = torch.cat(features, dim=1) | |
features = F.normalize(features, dim=1) | |
return features, ratio_h, ratio_w | |