File size: 27,014 Bytes
626eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
import os
from copy import deepcopy
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import datasets
import psutil
import torch
import transformers as tr
from datasets import load_dataset
from torch.utils.data import Dataset
from tqdm import tqdm
from relik.common.log import get_console_logger, get_logger
from relik.retriever.common.model_inputs import ModelInputs
from relik.retriever.data.base.datasets import BaseDataset, IterableBaseDataset
from relik.retriever.data.utils import HardNegativesManager
console_logger = get_console_logger()
logger = get_logger(__name__)
class SubsampleStrategyEnum(Enum):
NONE = "none"
RANDOM = "random"
IN_ORDER = "in_order"
class GoldenRetrieverDataset:
def __init__(
self,
name: str,
path: Union[str, os.PathLike, List[str], List[os.PathLike]] = None,
data: Any = None,
tokenizer: Optional[Union[str, tr.PreTrainedTokenizer]] = None,
# passages: Union[str, os.PathLike, List[str]] = None,
passage_batch_size: int = 32,
question_batch_size: int = 32,
max_positives: int = -1,
max_negatives: int = 0,
max_hard_negatives: int = 0,
max_question_length: int = 256,
max_passage_length: int = 64,
shuffle: bool = False,
subsample_strategy: Optional[str] = SubsampleStrategyEnum.NONE,
subsample_portion: float = 0.1,
num_proc: Optional[int] = None,
load_from_cache_file: bool = True,
keep_in_memory: bool = False,
prefetch: bool = True,
load_fn_kwargs: Optional[Dict[str, Any]] = None,
batch_fn_kwargs: Optional[Dict[str, Any]] = None,
collate_fn_kwargs: Optional[Dict[str, Any]] = None,
):
if path is None and data is None:
raise ValueError("Either `path` or `data` must be provided")
if tokenizer is None:
raise ValueError("A tokenizer must be provided")
# dataset parameters
self.name = name
self.path = Path(path) or path
if path is not None and not isinstance(self.path, Sequence):
self.path = [self.path]
# self.project_folder = Path(__file__).parent.parent.parent
self.data = data
# hyper-parameters
self.passage_batch_size = passage_batch_size
self.question_batch_size = question_batch_size
self.max_positives = max_positives
self.max_negatives = max_negatives
self.max_hard_negatives = max_hard_negatives
self.max_question_length = max_question_length
self.max_passage_length = max_passage_length
self.shuffle = shuffle
self.num_proc = num_proc
self.load_from_cache_file = load_from_cache_file
self.keep_in_memory = keep_in_memory
self.prefetch = prefetch
self.tokenizer = tokenizer
if isinstance(self.tokenizer, str):
self.tokenizer = tr.AutoTokenizer.from_pretrained(self.tokenizer)
self.padding_ops = {
"input_ids": partial(
self.pad_sequence,
value=self.tokenizer.pad_token_id,
),
"attention_mask": partial(self.pad_sequence, value=0),
"token_type_ids": partial(
self.pad_sequence,
value=self.tokenizer.pad_token_type_id,
),
}
# check if subsample strategy is valid
if subsample_strategy is not None:
# subsample_strategy can be a string or a SubsampleStrategy
if isinstance(subsample_strategy, str):
try:
subsample_strategy = SubsampleStrategyEnum(subsample_strategy)
except ValueError:
raise ValueError(
f"Subsample strategy {subsample_strategy} is not valid. "
f"Valid strategies are: {SubsampleStrategyEnum.__members__}"
)
if not isinstance(subsample_strategy, SubsampleStrategyEnum):
raise ValueError(
f"Subsample strategy {subsample_strategy} is not valid. "
f"Valid strategies are: {SubsampleStrategyEnum.__members__}"
)
self.subsample_strategy = subsample_strategy
self.subsample_portion = subsample_portion
# load the dataset
if data is None:
self.data: Dataset = self.load(
self.path,
tokenizer=self.tokenizer,
load_from_cache_file=load_from_cache_file,
load_fn_kwargs=load_fn_kwargs,
num_proc=num_proc,
shuffle=shuffle,
keep_in_memory=keep_in_memory,
max_positives=max_positives,
max_negatives=max_negatives,
max_hard_negatives=max_hard_negatives,
max_question_length=max_question_length,
max_passage_length=max_passage_length,
)
else:
self.data: Dataset = data
self.hn_manager: Optional[HardNegativesManager] = None
# keep track of how many times the dataset has been iterated over
self.number_of_complete_iterations = 0
def __repr__(self) -> str:
return f"GoldenRetrieverDataset({self.name=}, {self.path=})"
def __len__(self) -> int:
raise NotImplementedError
def __getitem__(
self, index
) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
raise NotImplementedError
def to_torch_dataset(self, *args, **kwargs) -> torch.utils.data.Dataset:
raise NotImplementedError
def load(
self,
paths: Union[str, os.PathLike, List[str], List[os.PathLike]],
tokenizer: tr.PreTrainedTokenizer = None,
load_fn_kwargs: Dict = None,
load_from_cache_file: bool = True,
num_proc: Optional[int] = None,
shuffle: bool = False,
keep_in_memory: bool = True,
max_positives: int = -1,
max_negatives: int = -1,
max_hard_negatives: int = -1,
max_passages: int = -1,
max_question_length: int = 256,
max_passage_length: int = 64,
*args,
**kwargs,
) -> Any:
# if isinstance(paths, Sequence):
# paths = [self.project_folder / path for path in paths]
# else:
# paths = [self.project_folder / paths]
# read the data and put it in a placeholder list
for path in paths:
if not path.exists():
raise ValueError(f"{path} does not exist")
fn_kwargs = dict(
tokenizer=tokenizer,
max_positives=max_positives,
max_negatives=max_negatives,
max_hard_negatives=max_hard_negatives,
max_passages=max_passages,
max_question_length=max_question_length,
max_passage_length=max_passage_length,
)
if load_fn_kwargs is not None:
fn_kwargs.update(load_fn_kwargs)
if num_proc is None:
num_proc = psutil.cpu_count(logical=False)
# The data is a list of dictionaries, each dictionary is a sample
# Each sample has the following keys:
# - "question": the question
# - "answers": a list of answers
# - "positive_ctxs": a list of positive passages
# - "negative_ctxs": a list of negative passages
# - "hard_negative_ctxs": a list of hard negative passages
# use the huggingface dataset library to load the data, by default it will load the
# data in a dict with the key being "train".
logger.info(f"Loading data for dataset {self.name}")
data = load_dataset(
"json",
data_files=[str(p) for p in paths], # datasets needs str paths and not Path
split="train",
streaming=False, # TODO maybe we can make streaming work
keep_in_memory=keep_in_memory,
)
# add id if not present
if isinstance(data, datasets.Dataset):
data = data.add_column("sample_idx", range(len(data)))
else:
data = data.map(
lambda x, idx: x.update({"sample_idx": idx}), with_indices=True
)
map_kwargs = dict(
function=self.load_fn,
fn_kwargs=fn_kwargs,
)
if isinstance(data, datasets.Dataset):
map_kwargs.update(
dict(
load_from_cache_file=load_from_cache_file,
keep_in_memory=keep_in_memory,
num_proc=num_proc,
desc="Loading data",
)
)
# preprocess the data
data = data.map(**map_kwargs)
# shuffle the data
if shuffle:
data.shuffle(seed=42)
return data
@staticmethod
def create_batches(
data: Dataset,
batch_fn: Callable,
batch_fn_kwargs: Optional[Dict[str, Any]] = None,
prefetch: bool = True,
*args,
**kwargs,
) -> Union[Iterable, List]:
if not prefetch:
# if we are streaming, we don't need to create batches right now
# we will create them on the fly when we need them
batched_data = (
batch
for batch in batch_fn(
data, **(batch_fn_kwargs if batch_fn_kwargs is not None else {})
)
)
else:
batched_data = [
batch
for batch in tqdm(
batch_fn(
data, **(batch_fn_kwargs if batch_fn_kwargs is not None else {})
),
desc="Creating batches",
)
]
return batched_data
@staticmethod
def collate_batches(
batched_data: Union[Iterable, List],
collate_fn: Callable,
collate_fn_kwargs: Optional[Dict[str, Any]] = None,
prefetch: bool = True,
*args,
**kwargs,
) -> Union[Iterable, List]:
if not prefetch:
collated_data = (
collate_fn(batch, **(collate_fn_kwargs if collate_fn_kwargs else {}))
for batch in batched_data
)
else:
collated_data = [
collate_fn(batch, **(collate_fn_kwargs if collate_fn_kwargs else {}))
for batch in tqdm(batched_data, desc="Collating batches")
]
return collated_data
@staticmethod
def load_fn(sample: Dict, *args, **kwargs) -> Dict:
raise NotImplementedError
@staticmethod
def batch_fn(data: Dataset, *args, **kwargs) -> Any:
raise NotImplementedError
@staticmethod
def collate_fn(batch: Any, *args, **kwargs) -> Any:
raise NotImplementedError
@staticmethod
def pad_sequence(
sequence: Union[List, torch.Tensor],
length: int,
value: Any = None,
pad_to_left: bool = False,
) -> Union[List, torch.Tensor]:
"""
Pad the input to the specified length with the given value.
Args:
sequence (:obj:`List`, :obj:`torch.Tensor`):
Element to pad, it can be either a :obj:`List` or a :obj:`torch.Tensor`.
length (:obj:`int`, :obj:`str`, optional, defaults to :obj:`subtoken`):
Length after pad.
value (:obj:`Any`, optional):
Value to use as padding.
pad_to_left (:obj:`bool`, optional, defaults to :obj:`False`):
If :obj:`True`, pads to the left, right otherwise.
Returns:
:obj:`List`, :obj:`torch.Tensor`: The padded sequence.
"""
padding = [value] * abs(length - len(sequence))
if isinstance(sequence, torch.Tensor):
if len(sequence.shape) > 1:
raise ValueError(
f"Sequence tensor must be 1D. Current shape is `{len(sequence.shape)}`"
)
padding = torch.as_tensor(padding)
if pad_to_left:
if isinstance(sequence, torch.Tensor):
return torch.cat((padding, sequence), -1)
return padding + sequence
if isinstance(sequence, torch.Tensor):
return torch.cat((sequence, padding), -1)
return sequence + padding
def convert_to_batch(
self, samples: Any, *args, **kwargs
) -> Dict[str, torch.Tensor]:
"""
Convert the list of samples to a batch.
Args:
samples (:obj:`List`):
List of samples to convert to a batch.
Returns:
:obj:`Dict[str, torch.Tensor]`: The batch.
"""
# invert questions from list of dict to dict of list
samples = {k: [d[k] for d in samples] for k in samples[0]}
# get max length of questions
max_len = max(len(x) for x in samples["input_ids"])
# pad the questions
for key in samples:
if key in self.padding_ops:
samples[key] = torch.as_tensor(
[self.padding_ops[key](b, max_len) for b in samples[key]]
)
return samples
def shuffle_data(self, seed: int = 42):
self.data = self.data.shuffle(seed=seed)
class InBatchNegativesDataset(GoldenRetrieverDataset):
def __len__(self) -> int:
if isinstance(self.data, datasets.Dataset):
return len(self.data)
def __getitem__(
self, index
) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
return self.data[index]
def to_torch_dataset(self) -> torch.utils.data.Dataset:
shuffle_this_time = self.shuffle
if (
self.subsample_strategy
and self.subsample_strategy != SubsampleStrategyEnum.NONE
):
number_of_samples = int(len(self.data) * self.subsample_portion)
if self.subsample_strategy == SubsampleStrategyEnum.RANDOM:
logger.info(
f"Random subsampling {number_of_samples} samples from {len(self.data)}"
)
data = (
deepcopy(self.data)
.shuffle(seed=42 + self.number_of_complete_iterations)
.select(range(0, number_of_samples))
)
elif self.subsample_strategy == SubsampleStrategyEnum.IN_ORDER:
# number_of_samples = int(len(self.data) * self.subsample_portion)
already_selected = (
number_of_samples * self.number_of_complete_iterations
)
logger.info(
f"Subsampling {number_of_samples} samples out of {len(self.data)}"
)
to_select = min(already_selected + number_of_samples, len(self.data))
logger.info(
f"Portion of data selected: {already_selected} " f"to {to_select}"
)
data = deepcopy(self.data).select(range(already_selected, to_select))
# don't shuffle the data if we are subsampling, and we have still not completed
# one full iteration over the dataset
if self.number_of_complete_iterations > 0:
shuffle_this_time = False
# reset the number of complete iterations
if to_select >= len(self.data):
# reset the number of complete iterations,
# we have completed one full iteration over the dataset
# the value is -1 because we want to start from 0 at the next iteration
self.number_of_complete_iterations = -1
else:
raise ValueError(
f"Subsample strategy `{self.subsample_strategy}` is not valid. "
f"Valid strategies are: {SubsampleStrategyEnum.__members__}"
)
else:
data = data = self.data
# do we need to shuffle the data?
if self.shuffle and shuffle_this_time:
logger.info("Shuffling the data")
data = data.shuffle(seed=42 + self.number_of_complete_iterations)
batch_fn_kwargs = {
"passage_batch_size": self.passage_batch_size,
"question_batch_size": self.question_batch_size,
"hard_negatives_manager": self.hn_manager,
}
batched_data = self.create_batches(
data,
batch_fn=self.batch_fn,
batch_fn_kwargs=batch_fn_kwargs,
prefetch=self.prefetch,
)
batched_data = self.collate_batches(
batched_data, self.collate_fn, prefetch=self.prefetch
)
# increment the number of complete iterations
self.number_of_complete_iterations += 1
if self.prefetch:
return BaseDataset(name=self.name, data=batched_data)
else:
return IterableBaseDataset(name=self.name, data=batched_data)
@staticmethod
def load_fn(
sample: Dict,
tokenizer: tr.PreTrainedTokenizer,
max_positives: int,
max_negatives: int,
max_hard_negatives: int,
max_passages: int = -1,
max_question_length: int = 256,
max_passage_length: int = 128,
*args,
**kwargs,
) -> Dict:
# remove duplicates and limit the number of passages
positives = list(set([p["text"].strip() for p in sample["positive_ctxs"]]))
if max_positives != -1:
positives = positives[:max_positives]
negatives = list(set([n["text"].strip() for n in sample["negative_ctxs"]]))
if max_negatives != -1:
negatives = negatives[:max_negatives]
hard_negatives = list(
set([h["text"].strip() for h in sample["hard_negative_ctxs"]])
)
if max_hard_negatives != -1:
hard_negatives = hard_negatives[:max_hard_negatives]
question = tokenizer(
sample["question"], max_length=max_question_length, truncation=True
)
passage = positives + negatives + hard_negatives
if max_passages != -1:
passage = passage[:max_passages]
passage = tokenizer(passage, max_length=max_passage_length, truncation=True)
# invert the passage data structure from a dict of lists to a list of dicts
passage = [dict(zip(passage, t)) for t in zip(*passage.values())]
output = dict(
question=question,
passage=passage,
positives=positives,
positive_pssgs=passage[: len(positives)],
)
return output
@staticmethod
def batch_fn(
data: Dataset,
passage_batch_size: int,
question_batch_size: int,
hard_negatives_manager: Optional[HardNegativesManager] = None,
*args,
**kwargs,
) -> Dict[str, List[Dict[str, Any]]]:
def split_batch(
batch: Union[Dict[str, Any], ModelInputs], question_batch_size: int
) -> List[ModelInputs]:
"""
Split a batch into multiple batches of size `question_batch_size` while keeping
the same number of passages.
"""
def split_fn(x):
return [
x[i : i + question_batch_size]
for i in range(0, len(x), question_batch_size)
]
# split the sample_idx
sample_idx = split_fn(batch["sample_idx"])
# split the questions
questions = split_fn(batch["questions"])
# split the positives
positives = split_fn(batch["positives"])
# split the positives_pssgs
positives_pssgs = split_fn(batch["positives_pssgs"])
# collect the new batches
batches = []
for i in range(len(questions)):
batches.append(
ModelInputs(
dict(
sample_idx=sample_idx[i],
questions=questions[i],
passages=batch["passages"],
positives=positives[i],
positives_pssgs=positives_pssgs[i],
)
)
)
return batches
batch = []
passages_in_batch = {}
for sample in data:
if len(passages_in_batch) >= passage_batch_size:
# create the batch dict
batch_dict = ModelInputs(
dict(
sample_idx=[s["sample_idx"] for s in batch],
questions=[s["question"] for s in batch],
passages=list(passages_in_batch.values()),
positives_pssgs=[s["positive_pssgs"] for s in batch],
positives=[s["positives"] for s in batch],
)
)
# split the batch if needed
if len(batch) > question_batch_size:
for splited_batch in split_batch(batch_dict, question_batch_size):
yield splited_batch
else:
yield batch_dict
# reset batch
batch = []
passages_in_batch = {}
batch.append(sample)
# yes it's a bit ugly but it works :)
# count the number of passages in the batch and stop if we reach the limit
# we use a set to avoid counting the same passage twice
# we use a tuple because set doesn't support lists
# we use input_ids as discriminator
passages_in_batch.update(
{tuple(passage["input_ids"]): passage for passage in sample["passage"]}
)
# check for hard negatives and add with a probability of 0.1
if hard_negatives_manager is not None:
if sample["sample_idx"] in hard_negatives_manager:
passages_in_batch.update(
{
tuple(passage["input_ids"]): passage
for passage in hard_negatives_manager.get(
sample["sample_idx"]
)
}
)
# left over
if len(batch) > 0:
# create the batch dict
batch_dict = ModelInputs(
dict(
sample_idx=[s["sample_idx"] for s in batch],
questions=[s["question"] for s in batch],
passages=list(passages_in_batch.values()),
positives_pssgs=[s["positive_pssgs"] for s in batch],
positives=[s["positives"] for s in batch],
)
)
# split the batch if needed
if len(batch) > question_batch_size:
for splited_batch in split_batch(batch_dict, question_batch_size):
yield splited_batch
else:
yield batch_dict
def collate_fn(self, batch: Any, *args, **kwargs) -> Any:
# convert questions and passages to a batch
questions = self.convert_to_batch(batch.questions)
passages = self.convert_to_batch(batch.passages)
# build an index to map the position of the passage in the batch
passage_index = {tuple(c["input_ids"]): i for i, c in enumerate(batch.passages)}
# now we can create the labels
labels = torch.zeros(
questions["input_ids"].shape[0], passages["input_ids"].shape[0]
)
# iterate over the questions and set the labels to 1 if the passage is positive
for sample_idx in range(len(questions["input_ids"])):
for pssg in batch["positives_pssgs"][sample_idx]:
# get the index of the positive passage
index = passage_index[tuple(pssg["input_ids"])]
# set the label to 1
labels[sample_idx, index] = 1
model_inputs = ModelInputs(
{
"questions": questions,
"passages": passages,
"labels": labels,
"positives": batch["positives"],
"sample_idx": batch["sample_idx"],
}
)
return model_inputs
class AidaInBatchNegativesDataset(InBatchNegativesDataset):
def __init__(self, use_topics: bool = False, *args, **kwargs):
if "load_fn_kwargs" not in kwargs:
kwargs["load_fn_kwargs"] = {}
kwargs["load_fn_kwargs"]["use_topics"] = use_topics
super().__init__(*args, **kwargs)
@staticmethod
def load_fn(
sample: Dict,
tokenizer: tr.PreTrainedTokenizer,
max_positives: int,
max_negatives: int,
max_hard_negatives: int,
max_passages: int = -1,
max_question_length: int = 256,
max_passage_length: int = 128,
use_topics: bool = False,
*args,
**kwargs,
) -> Dict:
# remove duplicates and limit the number of passages
positives = list(set([p["text"].strip() for p in sample["positive_ctxs"]]))
if max_positives != -1:
positives = positives[:max_positives]
negatives = list(set([n["text"].strip() for n in sample["negative_ctxs"]]))
if max_negatives != -1:
negatives = negatives[:max_negatives]
hard_negatives = list(
set([h["text"].strip() for h in sample["hard_negative_ctxs"]])
)
if max_hard_negatives != -1:
hard_negatives = hard_negatives[:max_hard_negatives]
question = sample["question"]
if "doc_topic" in sample and use_topics:
question = tokenizer(
question,
sample["doc_topic"],
max_length=max_question_length,
truncation=True,
)
else:
question = tokenizer(
question, max_length=max_question_length, truncation=True
)
passage = positives + negatives + hard_negatives
if max_passages != -1:
passage = passage[:max_passages]
passage = tokenizer(passage, max_length=max_passage_length, truncation=True)
# invert the passage data structure from a dict of lists to a list of dicts
passage = [dict(zip(passage, t)) for t in zip(*passage.values())]
output = dict(
question=question,
passage=passage,
positives=positives,
positive_pssgs=passage[: len(positives)],
)
return output
|