File size: 27,014 Bytes
626eca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
import os
from copy import deepcopy
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union

import datasets
import psutil
import torch
import transformers as tr
from datasets import load_dataset
from torch.utils.data import Dataset
from tqdm import tqdm

from relik.common.log import get_console_logger, get_logger
from relik.retriever.common.model_inputs import ModelInputs
from relik.retriever.data.base.datasets import BaseDataset, IterableBaseDataset
from relik.retriever.data.utils import HardNegativesManager

console_logger = get_console_logger()

logger = get_logger(__name__)


class SubsampleStrategyEnum(Enum):
    NONE = "none"
    RANDOM = "random"
    IN_ORDER = "in_order"


class GoldenRetrieverDataset:
    def __init__(
        self,
        name: str,
        path: Union[str, os.PathLike, List[str], List[os.PathLike]] = None,
        data: Any = None,
        tokenizer: Optional[Union[str, tr.PreTrainedTokenizer]] = None,
        # passages: Union[str, os.PathLike, List[str]] = None,
        passage_batch_size: int = 32,
        question_batch_size: int = 32,
        max_positives: int = -1,
        max_negatives: int = 0,
        max_hard_negatives: int = 0,
        max_question_length: int = 256,
        max_passage_length: int = 64,
        shuffle: bool = False,
        subsample_strategy: Optional[str] = SubsampleStrategyEnum.NONE,
        subsample_portion: float = 0.1,
        num_proc: Optional[int] = None,
        load_from_cache_file: bool = True,
        keep_in_memory: bool = False,
        prefetch: bool = True,
        load_fn_kwargs: Optional[Dict[str, Any]] = None,
        batch_fn_kwargs: Optional[Dict[str, Any]] = None,
        collate_fn_kwargs: Optional[Dict[str, Any]] = None,
    ):
        if path is None and data is None:
            raise ValueError("Either `path` or `data` must be provided")

        if tokenizer is None:
            raise ValueError("A tokenizer must be provided")

        # dataset parameters
        self.name = name
        self.path = Path(path) or path
        if path is not None and not isinstance(self.path, Sequence):
            self.path = [self.path]
        # self.project_folder = Path(__file__).parent.parent.parent
        self.data = data

        # hyper-parameters
        self.passage_batch_size = passage_batch_size
        self.question_batch_size = question_batch_size
        self.max_positives = max_positives
        self.max_negatives = max_negatives
        self.max_hard_negatives = max_hard_negatives
        self.max_question_length = max_question_length
        self.max_passage_length = max_passage_length
        self.shuffle = shuffle
        self.num_proc = num_proc
        self.load_from_cache_file = load_from_cache_file
        self.keep_in_memory = keep_in_memory
        self.prefetch = prefetch

        self.tokenizer = tokenizer
        if isinstance(self.tokenizer, str):
            self.tokenizer = tr.AutoTokenizer.from_pretrained(self.tokenizer)

        self.padding_ops = {
            "input_ids": partial(
                self.pad_sequence,
                value=self.tokenizer.pad_token_id,
            ),
            "attention_mask": partial(self.pad_sequence, value=0),
            "token_type_ids": partial(
                self.pad_sequence,
                value=self.tokenizer.pad_token_type_id,
            ),
        }

        # check if subsample strategy is valid
        if subsample_strategy is not None:
            # subsample_strategy can be a string or a SubsampleStrategy
            if isinstance(subsample_strategy, str):
                try:
                    subsample_strategy = SubsampleStrategyEnum(subsample_strategy)
                except ValueError:
                    raise ValueError(
                        f"Subsample strategy {subsample_strategy} is not valid. "
                        f"Valid strategies are: {SubsampleStrategyEnum.__members__}"
                    )
            if not isinstance(subsample_strategy, SubsampleStrategyEnum):
                raise ValueError(
                    f"Subsample strategy {subsample_strategy} is not valid. "
                    f"Valid strategies are: {SubsampleStrategyEnum.__members__}"
                )
        self.subsample_strategy = subsample_strategy
        self.subsample_portion = subsample_portion

        # load the dataset
        if data is None:
            self.data: Dataset = self.load(
                self.path,
                tokenizer=self.tokenizer,
                load_from_cache_file=load_from_cache_file,
                load_fn_kwargs=load_fn_kwargs,
                num_proc=num_proc,
                shuffle=shuffle,
                keep_in_memory=keep_in_memory,
                max_positives=max_positives,
                max_negatives=max_negatives,
                max_hard_negatives=max_hard_negatives,
                max_question_length=max_question_length,
                max_passage_length=max_passage_length,
            )
        else:
            self.data: Dataset = data

        self.hn_manager: Optional[HardNegativesManager] = None

        # keep track of how many times the dataset has been iterated over
        self.number_of_complete_iterations = 0

    def __repr__(self) -> str:
        return f"GoldenRetrieverDataset({self.name=}, {self.path=})"

    def __len__(self) -> int:
        raise NotImplementedError

    def __getitem__(
        self, index
    ) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
        raise NotImplementedError

    def to_torch_dataset(self, *args, **kwargs) -> torch.utils.data.Dataset:
        raise NotImplementedError

    def load(
        self,
        paths: Union[str, os.PathLike, List[str], List[os.PathLike]],
        tokenizer: tr.PreTrainedTokenizer = None,
        load_fn_kwargs: Dict = None,
        load_from_cache_file: bool = True,
        num_proc: Optional[int] = None,
        shuffle: bool = False,
        keep_in_memory: bool = True,
        max_positives: int = -1,
        max_negatives: int = -1,
        max_hard_negatives: int = -1,
        max_passages: int = -1,
        max_question_length: int = 256,
        max_passage_length: int = 64,
        *args,
        **kwargs,
    ) -> Any:
        # if isinstance(paths, Sequence):
        #     paths = [self.project_folder / path for path in paths]
        # else:
        #     paths = [self.project_folder / paths]

        # read the data and put it in a placeholder list
        for path in paths:
            if not path.exists():
                raise ValueError(f"{path} does not exist")

        fn_kwargs = dict(
            tokenizer=tokenizer,
            max_positives=max_positives,
            max_negatives=max_negatives,
            max_hard_negatives=max_hard_negatives,
            max_passages=max_passages,
            max_question_length=max_question_length,
            max_passage_length=max_passage_length,
        )
        if load_fn_kwargs is not None:
            fn_kwargs.update(load_fn_kwargs)

        if num_proc is None:
            num_proc = psutil.cpu_count(logical=False)

        # The data is a list of dictionaries, each dictionary is a sample
        # Each sample has the following keys:
        #   - "question": the question
        #   - "answers": a list of answers
        #   - "positive_ctxs": a list of positive passages
        #   - "negative_ctxs": a list of negative passages
        #   - "hard_negative_ctxs": a list of hard negative passages
        # use the huggingface dataset library to load the data, by default it will load the
        # data in a dict with the key being "train".
        logger.info(f"Loading data for dataset {self.name}")
        data = load_dataset(
            "json",
            data_files=[str(p) for p in paths],  # datasets needs str paths and not Path
            split="train",
            streaming=False,  # TODO maybe we can make streaming work
            keep_in_memory=keep_in_memory,
        )
        # add id if not present
        if isinstance(data, datasets.Dataset):
            data = data.add_column("sample_idx", range(len(data)))
        else:
            data = data.map(
                lambda x, idx: x.update({"sample_idx": idx}), with_indices=True
            )

        map_kwargs = dict(
            function=self.load_fn,
            fn_kwargs=fn_kwargs,
        )
        if isinstance(data, datasets.Dataset):
            map_kwargs.update(
                dict(
                    load_from_cache_file=load_from_cache_file,
                    keep_in_memory=keep_in_memory,
                    num_proc=num_proc,
                    desc="Loading data",
                )
            )
        # preprocess the data
        data = data.map(**map_kwargs)

        # shuffle the data
        if shuffle:
            data.shuffle(seed=42)

        return data

    @staticmethod
    def create_batches(
        data: Dataset,
        batch_fn: Callable,
        batch_fn_kwargs: Optional[Dict[str, Any]] = None,
        prefetch: bool = True,
        *args,
        **kwargs,
    ) -> Union[Iterable, List]:
        if not prefetch:
            # if we are streaming, we don't need to create batches right now
            # we will create them on the fly when we need them
            batched_data = (
                batch
                for batch in batch_fn(
                    data, **(batch_fn_kwargs if batch_fn_kwargs is not None else {})
                )
            )
        else:
            batched_data = [
                batch
                for batch in tqdm(
                    batch_fn(
                        data, **(batch_fn_kwargs if batch_fn_kwargs is not None else {})
                    ),
                    desc="Creating batches",
                )
            ]
        return batched_data

    @staticmethod
    def collate_batches(
        batched_data: Union[Iterable, List],
        collate_fn: Callable,
        collate_fn_kwargs: Optional[Dict[str, Any]] = None,
        prefetch: bool = True,
        *args,
        **kwargs,
    ) -> Union[Iterable, List]:
        if not prefetch:
            collated_data = (
                collate_fn(batch, **(collate_fn_kwargs if collate_fn_kwargs else {}))
                for batch in batched_data
            )
        else:
            collated_data = [
                collate_fn(batch, **(collate_fn_kwargs if collate_fn_kwargs else {}))
                for batch in tqdm(batched_data, desc="Collating batches")
            ]
        return collated_data

    @staticmethod
    def load_fn(sample: Dict, *args, **kwargs) -> Dict:
        raise NotImplementedError

    @staticmethod
    def batch_fn(data: Dataset, *args, **kwargs) -> Any:
        raise NotImplementedError

    @staticmethod
    def collate_fn(batch: Any, *args, **kwargs) -> Any:
        raise NotImplementedError

    @staticmethod
    def pad_sequence(
        sequence: Union[List, torch.Tensor],
        length: int,
        value: Any = None,
        pad_to_left: bool = False,
    ) -> Union[List, torch.Tensor]:
        """
        Pad the input to the specified length with the given value.

        Args:
            sequence (:obj:`List`, :obj:`torch.Tensor`):
                Element to pad, it can be either a :obj:`List` or a :obj:`torch.Tensor`.
            length (:obj:`int`, :obj:`str`, optional, defaults to :obj:`subtoken`):
                Length after pad.
            value (:obj:`Any`, optional):
                Value to use as padding.
            pad_to_left (:obj:`bool`, optional, defaults to :obj:`False`):
                If :obj:`True`, pads to the left, right otherwise.

        Returns:
            :obj:`List`, :obj:`torch.Tensor`: The padded sequence.

        """
        padding = [value] * abs(length - len(sequence))
        if isinstance(sequence, torch.Tensor):
            if len(sequence.shape) > 1:
                raise ValueError(
                    f"Sequence tensor must be 1D. Current shape is `{len(sequence.shape)}`"
                )
            padding = torch.as_tensor(padding)
        if pad_to_left:
            if isinstance(sequence, torch.Tensor):
                return torch.cat((padding, sequence), -1)
            return padding + sequence
        if isinstance(sequence, torch.Tensor):
            return torch.cat((sequence, padding), -1)
        return sequence + padding

    def convert_to_batch(
        self, samples: Any, *args, **kwargs
    ) -> Dict[str, torch.Tensor]:
        """
        Convert the list of samples to a batch.

        Args:
            samples (:obj:`List`):
                List of samples to convert to a batch.

        Returns:
            :obj:`Dict[str, torch.Tensor]`: The batch.
        """
        # invert questions from list of dict to dict of list
        samples = {k: [d[k] for d in samples] for k in samples[0]}
        # get max length of questions
        max_len = max(len(x) for x in samples["input_ids"])
        # pad the questions
        for key in samples:
            if key in self.padding_ops:
                samples[key] = torch.as_tensor(
                    [self.padding_ops[key](b, max_len) for b in samples[key]]
                )
        return samples

    def shuffle_data(self, seed: int = 42):
        self.data = self.data.shuffle(seed=seed)


class InBatchNegativesDataset(GoldenRetrieverDataset):
    def __len__(self) -> int:
        if isinstance(self.data, datasets.Dataset):
            return len(self.data)

    def __getitem__(
        self, index
    ) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
        return self.data[index]

    def to_torch_dataset(self) -> torch.utils.data.Dataset:
        shuffle_this_time = self.shuffle

        if (
            self.subsample_strategy
            and self.subsample_strategy != SubsampleStrategyEnum.NONE
        ):
            number_of_samples = int(len(self.data) * self.subsample_portion)
            if self.subsample_strategy == SubsampleStrategyEnum.RANDOM:
                logger.info(
                    f"Random subsampling {number_of_samples} samples from {len(self.data)}"
                )
                data = (
                    deepcopy(self.data)
                    .shuffle(seed=42 + self.number_of_complete_iterations)
                    .select(range(0, number_of_samples))
                )
            elif self.subsample_strategy == SubsampleStrategyEnum.IN_ORDER:
                # number_of_samples = int(len(self.data) * self.subsample_portion)
                already_selected = (
                    number_of_samples * self.number_of_complete_iterations
                )
                logger.info(
                    f"Subsampling {number_of_samples} samples out of {len(self.data)}"
                )
                to_select = min(already_selected + number_of_samples, len(self.data))
                logger.info(
                    f"Portion of data selected: {already_selected} " f"to {to_select}"
                )
                data = deepcopy(self.data).select(range(already_selected, to_select))

                # don't shuffle the data if we are subsampling, and we have still not completed
                # one full iteration over the dataset
                if self.number_of_complete_iterations > 0:
                    shuffle_this_time = False

                # reset the number of complete iterations
                if to_select >= len(self.data):
                    # reset the number of complete iterations,
                    # we have completed one full iteration over the dataset
                    # the value is -1 because we want to start from 0 at the next iteration
                    self.number_of_complete_iterations = -1
            else:
                raise ValueError(
                    f"Subsample strategy `{self.subsample_strategy}` is not valid. "
                    f"Valid strategies are: {SubsampleStrategyEnum.__members__}"
                )

        else:
            data = data = self.data

        # do we need to shuffle the data?
        if self.shuffle and shuffle_this_time:
            logger.info("Shuffling the data")
            data = data.shuffle(seed=42 + self.number_of_complete_iterations)

        batch_fn_kwargs = {
            "passage_batch_size": self.passage_batch_size,
            "question_batch_size": self.question_batch_size,
            "hard_negatives_manager": self.hn_manager,
        }
        batched_data = self.create_batches(
            data,
            batch_fn=self.batch_fn,
            batch_fn_kwargs=batch_fn_kwargs,
            prefetch=self.prefetch,
        )

        batched_data = self.collate_batches(
            batched_data, self.collate_fn, prefetch=self.prefetch
        )

        # increment the number of complete iterations
        self.number_of_complete_iterations += 1

        if self.prefetch:
            return BaseDataset(name=self.name, data=batched_data)
        else:
            return IterableBaseDataset(name=self.name, data=batched_data)

    @staticmethod
    def load_fn(
        sample: Dict,
        tokenizer: tr.PreTrainedTokenizer,
        max_positives: int,
        max_negatives: int,
        max_hard_negatives: int,
        max_passages: int = -1,
        max_question_length: int = 256,
        max_passage_length: int = 128,
        *args,
        **kwargs,
    ) -> Dict:
        # remove duplicates and limit the number of passages
        positives = list(set([p["text"].strip() for p in sample["positive_ctxs"]]))
        if max_positives != -1:
            positives = positives[:max_positives]
        negatives = list(set([n["text"].strip() for n in sample["negative_ctxs"]]))
        if max_negatives != -1:
            negatives = negatives[:max_negatives]
        hard_negatives = list(
            set([h["text"].strip() for h in sample["hard_negative_ctxs"]])
        )
        if max_hard_negatives != -1:
            hard_negatives = hard_negatives[:max_hard_negatives]

        question = tokenizer(
            sample["question"], max_length=max_question_length, truncation=True
        )

        passage = positives + negatives + hard_negatives
        if max_passages != -1:
            passage = passage[:max_passages]

        passage = tokenizer(passage, max_length=max_passage_length, truncation=True)

        # invert the passage data structure from a dict of lists to a list of dicts
        passage = [dict(zip(passage, t)) for t in zip(*passage.values())]

        output = dict(
            question=question,
            passage=passage,
            positives=positives,
            positive_pssgs=passage[: len(positives)],
        )
        return output

    @staticmethod
    def batch_fn(
        data: Dataset,
        passage_batch_size: int,
        question_batch_size: int,
        hard_negatives_manager: Optional[HardNegativesManager] = None,
        *args,
        **kwargs,
    ) -> Dict[str, List[Dict[str, Any]]]:
        def split_batch(
            batch: Union[Dict[str, Any], ModelInputs], question_batch_size: int
        ) -> List[ModelInputs]:
            """
            Split a batch into multiple batches of size `question_batch_size` while keeping
            the same number of passages.
            """

            def split_fn(x):
                return [
                    x[i : i + question_batch_size]
                    for i in range(0, len(x), question_batch_size)
                ]

            # split the sample_idx
            sample_idx = split_fn(batch["sample_idx"])
            # split the questions
            questions = split_fn(batch["questions"])
            # split the positives
            positives = split_fn(batch["positives"])
            # split the positives_pssgs
            positives_pssgs = split_fn(batch["positives_pssgs"])

            # collect the new batches
            batches = []
            for i in range(len(questions)):
                batches.append(
                    ModelInputs(
                        dict(
                            sample_idx=sample_idx[i],
                            questions=questions[i],
                            passages=batch["passages"],
                            positives=positives[i],
                            positives_pssgs=positives_pssgs[i],
                        )
                    )
                )
            return batches

        batch = []
        passages_in_batch = {}

        for sample in data:
            if len(passages_in_batch) >= passage_batch_size:
                # create the batch dict
                batch_dict = ModelInputs(
                    dict(
                        sample_idx=[s["sample_idx"] for s in batch],
                        questions=[s["question"] for s in batch],
                        passages=list(passages_in_batch.values()),
                        positives_pssgs=[s["positive_pssgs"] for s in batch],
                        positives=[s["positives"] for s in batch],
                    )
                )
                # split the batch if needed
                if len(batch) > question_batch_size:
                    for splited_batch in split_batch(batch_dict, question_batch_size):
                        yield splited_batch
                else:
                    yield batch_dict

                # reset batch
                batch = []
                passages_in_batch = {}

            batch.append(sample)
            # yes it's a bit ugly but it works :)
            # count the number of passages in the batch and stop if we reach the limit
            # we use a set to avoid counting the same passage twice
            # we use a tuple because set doesn't support lists
            # we use input_ids as discriminator
            passages_in_batch.update(
                {tuple(passage["input_ids"]): passage for passage in sample["passage"]}
            )
            # check for hard negatives and add with a probability of 0.1
            if hard_negatives_manager is not None:
                if sample["sample_idx"] in hard_negatives_manager:
                    passages_in_batch.update(
                        {
                            tuple(passage["input_ids"]): passage
                            for passage in hard_negatives_manager.get(
                                sample["sample_idx"]
                            )
                        }
                    )

        # left over
        if len(batch) > 0:
            # create the batch dict
            batch_dict = ModelInputs(
                dict(
                    sample_idx=[s["sample_idx"] for s in batch],
                    questions=[s["question"] for s in batch],
                    passages=list(passages_in_batch.values()),
                    positives_pssgs=[s["positive_pssgs"] for s in batch],
                    positives=[s["positives"] for s in batch],
                )
            )
            # split the batch if needed
            if len(batch) > question_batch_size:
                for splited_batch in split_batch(batch_dict, question_batch_size):
                    yield splited_batch
            else:
                yield batch_dict

    def collate_fn(self, batch: Any, *args, **kwargs) -> Any:
        # convert questions and passages to a batch
        questions = self.convert_to_batch(batch.questions)
        passages = self.convert_to_batch(batch.passages)

        # build an index to map the position of the passage in the batch
        passage_index = {tuple(c["input_ids"]): i for i, c in enumerate(batch.passages)}

        # now we can create the labels
        labels = torch.zeros(
            questions["input_ids"].shape[0], passages["input_ids"].shape[0]
        )
        # iterate over the questions and set the labels to 1 if the passage is positive
        for sample_idx in range(len(questions["input_ids"])):
            for pssg in batch["positives_pssgs"][sample_idx]:
                # get the index of the positive passage
                index = passage_index[tuple(pssg["input_ids"])]
                # set the label to 1
                labels[sample_idx, index] = 1

        model_inputs = ModelInputs(
            {
                "questions": questions,
                "passages": passages,
                "labels": labels,
                "positives": batch["positives"],
                "sample_idx": batch["sample_idx"],
            }
        )
        return model_inputs


class AidaInBatchNegativesDataset(InBatchNegativesDataset):
    def __init__(self, use_topics: bool = False, *args, **kwargs):
        if "load_fn_kwargs" not in kwargs:
            kwargs["load_fn_kwargs"] = {}
        kwargs["load_fn_kwargs"]["use_topics"] = use_topics
        super().__init__(*args, **kwargs)

    @staticmethod
    def load_fn(
        sample: Dict,
        tokenizer: tr.PreTrainedTokenizer,
        max_positives: int,
        max_negatives: int,
        max_hard_negatives: int,
        max_passages: int = -1,
        max_question_length: int = 256,
        max_passage_length: int = 128,
        use_topics: bool = False,
        *args,
        **kwargs,
    ) -> Dict:
        # remove duplicates and limit the number of passages
        positives = list(set([p["text"].strip() for p in sample["positive_ctxs"]]))
        if max_positives != -1:
            positives = positives[:max_positives]
        negatives = list(set([n["text"].strip() for n in sample["negative_ctxs"]]))
        if max_negatives != -1:
            negatives = negatives[:max_negatives]
        hard_negatives = list(
            set([h["text"].strip() for h in sample["hard_negative_ctxs"]])
        )
        if max_hard_negatives != -1:
            hard_negatives = hard_negatives[:max_hard_negatives]

        question = sample["question"]

        if "doc_topic" in sample and use_topics:
            question = tokenizer(
                question,
                sample["doc_topic"],
                max_length=max_question_length,
                truncation=True,
            )
        else:
            question = tokenizer(
                question, max_length=max_question_length, truncation=True
            )

        passage = positives + negatives + hard_negatives
        if max_passages != -1:
            passage = passage[:max_passages]

        passage = tokenizer(passage, max_length=max_passage_length, truncation=True)

        # invert the passage data structure from a dict of lists to a list of dicts
        passage = [dict(zip(passage, t)) for t in zip(*passage.values())]

        output = dict(
            question=question,
            passage=passage,
            positives=positives,
            positive_pssgs=passage[: len(positives)],
        )
        return output