File size: 23,609 Bytes
626eca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import collections
import logging
from pathlib import Path
from typing import Any, Callable, Dict, Iterator, List, Union

import torch
import transformers as tr
from tqdm import tqdm
from transformers import AutoConfig

from relik.common.log import get_console_logger, get_logger
from relik.reader.data.relik_reader_data_utils import batchify, flatten
from relik.reader.data.relik_reader_sample import RelikReaderSample
from relik.reader.pytorch_modules.hf.modeling_relik import (
    RelikReaderConfig,
    RelikReaderSpanModel,
)
from relik.reader.relik_reader_predictor import RelikReaderPredictor
from relik.reader.utils.save_load_utilities import load_model_and_conf
from relik.reader.utils.special_symbols import NME_SYMBOL, get_special_symbols

console_logger = get_console_logger()
logger = get_logger(__name__, level=logging.INFO)


class RelikReaderForSpanExtraction(torch.nn.Module):
    def __init__(
        self,
        transformer_model: str | tr.PreTrainedModel | None = None,
        additional_special_symbols: int = 0,
        num_layers: int | None = None,
        activation: str = "gelu",
        linears_hidden_size: int | None = 512,
        use_last_k_layers: int = 1,
        training: bool = False,
        device: str | torch.device | None = None,
        tokenizer: str | tr.PreTrainedTokenizer | None = None,
        **kwargs,
    ) -> None:
        super().__init__()

        if isinstance(transformer_model, str):
            config = AutoConfig.from_pretrained(
                transformer_model, trust_remote_code=True
            )
            if "relik-reader" in config.model_type:
                transformer_model = RelikReaderSpanModel.from_pretrained(
                    transformer_model, **kwargs
                )
            else:
                reader_config = RelikReaderConfig(
                    transformer_model=transformer_model,
                    additional_special_symbols=additional_special_symbols,
                    num_layers=num_layers,
                    activation=activation,
                    linears_hidden_size=linears_hidden_size,
                    use_last_k_layers=use_last_k_layers,
                    training=training,
                )
                transformer_model = RelikReaderSpanModel(reader_config)

        self.relik_reader_model = transformer_model

        self._tokenizer = tokenizer

        # move the model to the device
        self.to(device or torch.device("cpu"))

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: torch.Tensor,
        prediction_mask: torch.Tensor | None = None,
        special_symbols_mask: torch.Tensor | None = None,
        special_symbols_mask_entities: torch.Tensor | None = None,
        start_labels: torch.Tensor | None = None,
        end_labels: torch.Tensor | None = None,
        disambiguation_labels: torch.Tensor | None = None,
        relation_labels: torch.Tensor | None = None,
        is_validation: bool = False,
        is_prediction: bool = False,
        *args,
        **kwargs,
    ) -> Dict[str, Any]:
        return self.relik_reader_model(
            input_ids,
            attention_mask,
            token_type_ids,
            prediction_mask,
            special_symbols_mask,
            special_symbols_mask_entities,
            start_labels,
            end_labels,
            disambiguation_labels,
            relation_labels,
            is_validation,
            is_prediction,
            *args,
            **kwargs,
        )

    def batch_predict(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: torch.Tensor | None = None,
        prediction_mask: torch.Tensor | None = None,
        special_symbols_mask: torch.Tensor | None = None,
        sample: List[RelikReaderSample] | None = None,
        top_k: int = 5,  # the amount of top-k most probable entities to predict
        *args,
        **kwargs,
    ) -> Iterator[RelikReaderSample]:
        """


        Args:
            input_ids:
            attention_mask:
            token_type_ids:
            prediction_mask:
            special_symbols_mask:
            sample:
            top_k:
            *args:
            **kwargs:

        Returns:

        """
        forward_output = self.forward(
            input_ids,
            attention_mask,
            token_type_ids,
            prediction_mask,
            special_symbols_mask,
        )

        ned_start_predictions = forward_output["ned_start_predictions"].cpu().numpy()
        ned_end_predictions = forward_output["ned_end_predictions"].cpu().numpy()
        ed_predictions = forward_output["ed_predictions"].cpu().numpy()
        ed_probabilities = forward_output["ed_probabilities"].cpu().numpy()

        batch_predictable_candidates = kwargs["predictable_candidates"]
        patch_offset = kwargs["patch_offset"]
        for ts, ne_sp, ne_ep, edp, edpr, pred_cands, po in zip(
            sample,
            ned_start_predictions,
            ned_end_predictions,
            ed_predictions,
            ed_probabilities,
            batch_predictable_candidates,
            patch_offset,
        ):
            ne_start_indices = [ti for ti, c in enumerate(ne_sp[1:]) if c > 0]
            ne_end_indices = [ti for ti, c in enumerate(ne_ep[1:]) if c > 0]

            final_class2predicted_spans = collections.defaultdict(list)
            spans2predicted_probabilities = dict()
            for start_token_index, end_token_index in zip(
                ne_start_indices, ne_end_indices
            ):
                # predicted candidate
                token_class = edp[start_token_index + 1] - 1
                predicted_candidate_title = pred_cands[token_class]
                final_class2predicted_spans[predicted_candidate_title].append(
                    [start_token_index, end_token_index]
                )

                # candidates probabilities
                classes_probabilities = edpr[start_token_index + 1]
                classes_probabilities_best_indices = classes_probabilities.argsort()[
                    ::-1
                ]
                titles_2_probs = []
                top_k = (
                    min(
                        top_k,
                        len(classes_probabilities_best_indices),
                    )
                    if top_k != -1
                    else len(classes_probabilities_best_indices)
                )
                for i in range(top_k):
                    titles_2_probs.append(
                        (
                            pred_cands[classes_probabilities_best_indices[i] - 1],
                            classes_probabilities[
                                classes_probabilities_best_indices[i]
                            ].item(),
                        )
                    )
                spans2predicted_probabilities[
                    (start_token_index, end_token_index)
                ] = titles_2_probs

            if "patches" not in ts._d:
                ts._d["patches"] = dict()

            ts._d["patches"][po] = dict()
            sample_patch = ts._d["patches"][po]

            sample_patch["predicted_window_labels"] = final_class2predicted_spans
            sample_patch["span_title_probabilities"] = spans2predicted_probabilities

            # additional info
            sample_patch["predictable_candidates"] = pred_cands

            yield ts

    def _build_input(self, text: List[str], candidates: List[List[str]]) -> list[str]:
        candidates_symbols = get_special_symbols(len(candidates))
        candidates = [
            [cs, ct] if ct != NME_SYMBOL else [NME_SYMBOL]
            for cs, ct in zip(candidates_symbols, candidates)
        ]
        return (
            [self.tokenizer.cls_token]
            + text
            + [self.tokenizer.sep_token]
            + flatten(candidates)
            + [self.tokenizer.sep_token]
        )

    @staticmethod
    def _compute_offsets(offsets_mapping):
        offsets_mapping = offsets_mapping.numpy()
        token2word = []
        word2token = {}
        count = 0
        for i, offset in enumerate(offsets_mapping):
            if offset[0] == 0:
                token2word.append(i - count)
                word2token[i - count] = [i]
            else:
                token2word.append(token2word[-1])
                word2token[token2word[-1]].append(i)
                count += 1
        return token2word, word2token

    @staticmethod
    def _convert_tokens_to_word_annotations(sample: RelikReaderSample):
        triplets = []
        entities = []
        for entity in sample.predicted_entities:
            if sample.entity_candidates:
                entities.append(
                    (
                        sample.token2word[entity[0] - 1],
                        sample.token2word[entity[1] - 1] + 1,
                        sample.entity_candidates[entity[2]],
                    )
                )
            else:
                entities.append(
                    (
                        sample.token2word[entity[0] - 1],
                        sample.token2word[entity[1] - 1] + 1,
                        -1,
                    )
                )
        for predicted_triplet, predicted_triplet_probabilities in zip(
            sample.predicted_relations, sample.predicted_relations_probabilities
        ):
            subject, object_, relation = predicted_triplet
            subject = entities[subject]
            object_ = entities[object_]
            relation = sample.candidates[relation]
            triplets.append(
                {
                    "subject": {
                        "start": subject[0],
                        "end": subject[1],
                        "type": subject[2],
                        "name": " ".join(sample.tokens[subject[0] : subject[1]]),
                    },
                    "relation": {
                        "name": relation,
                        "probability": float(predicted_triplet_probabilities.round(2)),
                    },
                    "object": {
                        "start": object_[0],
                        "end": object_[1],
                        "type": object_[2],
                        "name": " ".join(sample.tokens[object_[0] : object_[1]]),
                    },
                }
            )
        sample.predicted_entities = entities
        sample.predicted_relations = triplets
        sample.predicted_relations_probabilities = None

    @torch.no_grad()
    @torch.inference_mode()
    def read(
        self,
        text: List[str] | List[List[str]] | None = None,
        samples: List[RelikReaderSample] | None = None,
        input_ids: torch.Tensor | None = None,
        attention_mask: torch.Tensor | None = None,
        token_type_ids: torch.Tensor | None = None,
        prediction_mask: torch.Tensor | None = None,
        special_symbols_mask: torch.Tensor | None = None,
        special_symbols_mask_entities: torch.Tensor | None = None,
        candidates: List[List[str]] | None = None,
        max_length: int | None = 1024,
        max_batch_size: int | None = 64,
        token_batch_size: int | None = None,
        progress_bar: bool = False,
        *args,
        **kwargs,
    ) -> List[List[RelikReaderSample]]:
        """
        Reads the given text.
        Args:
            text: The text to read in tokens.
            samples:
            input_ids: The input ids of the text.
            attention_mask: The attention mask of the text.
            token_type_ids: The token type ids of the text.
            prediction_mask: The prediction mask of the text.
            special_symbols_mask: The special symbols mask of the text.
            special_symbols_mask_entities: The special symbols mask entities of the text.
            candidates: The candidates of the text.
            max_length: The maximum length of the text.
            max_batch_size: The maximum batch size.
            token_batch_size: The maximum number of tokens per batch.
            progress_bar:
        Returns:
            The predicted labels for each sample.
        """
        if text is None and input_ids is None and samples is None:
            raise ValueError(
                "Either `text` or `input_ids` or `samples` must be provided."
            )
        if (input_ids is None and samples is None) and (
            text is None or candidates is None
        ):
            raise ValueError(
                "`text` and `candidates` must be provided to return the predictions when "
                "`input_ids` and `samples` is not provided."
            )
        if text is not None and samples is None:
            if len(text) != len(candidates):
                raise ValueError("`text` and `candidates` must have the same length.")
            if isinstance(text[0], str):  # change to list of text
                text = [text]
                candidates = [candidates]

            samples = [
                RelikReaderSample(tokens=t, candidates=c)
                for t, c in zip(text, candidates)
            ]

        if samples is not None:
            # function that creates a batch from the 'current_batch' list
            def output_batch() -> Dict[str, Any]:
                assert (
                    len(
                        set(
                            [
                                len(elem["predictable_candidates"])
                                for elem in current_batch
                            ]
                        )
                    )
                    == 1
                ), " ".join(
                    map(
                        str,
                        [len(elem["predictable_candidates"]) for elem in current_batch],
                    )
                )

                batch_dict = dict()

                de_values_by_field = {
                    fn: [de[fn] for de in current_batch if fn in de]
                    for fn in self.fields_batcher
                }

                # in case you provide fields batchers but in the batch
                # there are no elements for that field
                de_values_by_field = {
                    fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0
                }

                assert len(set([len(v) for v in de_values_by_field.values()]))

                # todo: maybe we should report the user about possible
                #  fields filtering due to "None" instances
                de_values_by_field = {
                    fn: fvs
                    for fn, fvs in de_values_by_field.items()
                    if all([fv is not None for fv in fvs])
                }

                for field_name, field_values in de_values_by_field.items():
                    field_batch = (
                        self.fields_batcher[field_name]([fv[0] for fv in field_values])
                        if self.fields_batcher[field_name] is not None
                        else field_values
                    )

                    batch_dict[field_name] = field_batch

                batch_dict = {
                    k: v.to(self.device) if isinstance(v, torch.Tensor) else v
                    for k, v in batch_dict.items()
                }
                return batch_dict

            current_batch = []
            predictions = []
            current_cand_len = -1

            for sample in tqdm(samples, disable=not progress_bar):
                sample.candidates = [NME_SYMBOL] + sample.candidates
                inputs_text = self._build_input(sample.tokens, sample.candidates)
                model_inputs = self.tokenizer(
                    inputs_text,
                    is_split_into_words=True,
                    add_special_tokens=False,
                    padding=False,
                    truncation=True,
                    max_length=max_length or self.tokenizer.model_max_length,
                    return_offsets_mapping=True,
                    return_tensors="pt",
                )
                model_inputs["special_symbols_mask"] = (
                    model_inputs["input_ids"] > self.tokenizer.vocab_size
                )
                # prediction mask is 0 until the first special symbol
                model_inputs["token_type_ids"] = (
                    torch.cumsum(model_inputs["special_symbols_mask"], dim=1) > 0
                ).long()
                # shift prediction_mask to the left
                model_inputs["prediction_mask"] = model_inputs["token_type_ids"].roll(
                    shifts=-1, dims=1
                )
                model_inputs["prediction_mask"][:, -1] = 1
                model_inputs["prediction_mask"][:, 0] = 1

                assert (
                    len(model_inputs["special_symbols_mask"])
                    == len(model_inputs["prediction_mask"])
                    == len(model_inputs["input_ids"])
                )

                model_inputs["sample"] = sample

                # compute cand_len using special_symbols_mask
                model_inputs["predictable_candidates"] = sample.candidates[
                    : model_inputs["special_symbols_mask"].sum().item()
                ]
                # cand_len = sum([id_ > self.tokenizer.vocab_size for id_ in model_inputs["input_ids"]])
                offsets = model_inputs.pop("offset_mapping")
                offsets = offsets[model_inputs["prediction_mask"] == 0]
                sample.token2word, sample.word2token = self._compute_offsets(offsets)
                future_max_len = max(
                    len(model_inputs["input_ids"]),
                    max([len(b["input_ids"]) for b in current_batch], default=0),
                )
                future_tokens_per_batch = future_max_len * (len(current_batch) + 1)

                if len(current_batch) > 0 and (
                    (
                        len(model_inputs["predictable_candidates"]) != current_cand_len
                        and current_cand_len != -1
                    )
                    or (
                        isinstance(token_batch_size, int)
                        and future_tokens_per_batch >= token_batch_size
                    )
                    or len(current_batch) == max_batch_size
                ):
                    batch_inputs = output_batch()
                    current_batch = []
                    predictions.extend(list(self.batch_predict(**batch_inputs)))
                current_cand_len = len(model_inputs["predictable_candidates"])
                current_batch.append(model_inputs)

            if current_batch:
                batch_inputs = output_batch()
                predictions.extend(list(self.batch_predict(**batch_inputs)))
        else:
            predictions = list(
                self.batch_predict(
                    input_ids,
                    attention_mask,
                    token_type_ids,
                    prediction_mask,
                    special_symbols_mask,
                    special_symbols_mask_entities,
                    *args,
                    **kwargs,
                )
            )
        return predictions

    @property
    def device(self) -> torch.device:
        """
        The device of the model.
        """
        return next(self.parameters()).device

    @property
    def tokenizer(self) -> tr.PreTrainedTokenizer:
        """
        The tokenizer.
        """
        if self._tokenizer:
            return self._tokenizer

        self._tokenizer = tr.AutoTokenizer.from_pretrained(
            self.relik_reader_model.config.name_or_path
        )
        return self._tokenizer

    @property
    def fields_batcher(self) -> Dict[str, Union[None, Callable[[list], Any]]]:
        fields_batchers = {
            "input_ids": lambda x: batchify(
                x, padding_value=self.tokenizer.pad_token_id
            ),
            "attention_mask": lambda x: batchify(x, padding_value=0),
            "token_type_ids": lambda x: batchify(x, padding_value=0),
            "prediction_mask": lambda x: batchify(x, padding_value=1),
            "global_attention": lambda x: batchify(x, padding_value=0),
            "token2word": None,
            "sample": None,
            "special_symbols_mask": lambda x: batchify(x, padding_value=False),
            "special_symbols_mask_entities": lambda x: batchify(x, padding_value=False),
        }
        if "roberta" in self.relik_reader_model.config.model_type:
            del fields_batchers["token_type_ids"]

        return fields_batchers

    def save_pretrained(
        self,
        output_dir: str,
        model_name: str | None = None,
        push_to_hub: bool = False,
        **kwargs,
    ) -> None:
        """
        Saves the model to the given path.
        Args:
            output_dir: The path to save the model to.
            model_name: The name of the model.
            push_to_hub: Whether to push the model to the hub.
        """
        # create the output directory
        output_dir = Path(output_dir)
        output_dir.mkdir(parents=True, exist_ok=True)

        model_name = model_name or "relik-reader-for-span-extraction"

        logger.info(f"Saving reader to {output_dir / model_name}")

        # save the model
        self.relik_reader_model.register_for_auto_class()
        self.relik_reader_model.save_pretrained(
            output_dir / model_name, push_to_hub=push_to_hub, **kwargs
        )

        logger.info("Saving reader to disk done.")

        if self.tokenizer:
            self.tokenizer.save_pretrained(
                output_dir / model_name, push_to_hub=push_to_hub, **kwargs
            )
            logger.info("Saving tokenizer to disk done.")


class RelikReader:
    def __init__(self, model_path: str, predict_nmes: bool = False):
        model, model_conf = load_model_and_conf(model_path)
        model.training = False
        model.eval()

        val_dataset_conf = model_conf.data.val_dataset
        val_dataset_conf.special_symbols = get_special_symbols(
            model_conf.model.entities_per_forward
        )
        val_dataset_conf.transformer_model = model_conf.model.model.transformer_model

        self.predictor = RelikReaderPredictor(
            model,
            dataset_conf=model_conf.data.val_dataset,
            predict_nmes=predict_nmes,
        )
        self.model_path = model_path

    def link_entities(
        self,
        dataset_path_or_samples: str | Iterator[RelikReaderSample],
        token_batch_size: int = 2048,
        progress_bar: bool = False,
    ) -> List[RelikReaderSample]:
        data_input = (
            (dataset_path_or_samples, None)
            if isinstance(dataset_path_or_samples, str)
            else (None, dataset_path_or_samples)
        )
        return self.predictor.predict(
            *data_input,
            dataset_conf=None,
            token_batch_size=token_batch_size,
            progress_bar=progress_bar,
        )

    # def save_pretrained(self, path: Union[str, Path]):
    #     self.predictor.save(path)


def main():
    rr = RelikReader("riccorl/relik-reader-aida-deberta-small-old", predict_nmes=True)
    predictions = rr.link_entities(
        "/Users/ric/Documents/PhD/Projects/relik/data/reader/aida/testa.jsonl"
    )
    print(predictions)


if __name__ == "__main__":
    main()