File size: 14,622 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from typing import Dict, List

from collections import defaultdict

from lightning.pytorch.callbacks import Callback

from relik.reader.data.relik_reader_re_data import RelikREDataset
from relik.reader.data.relik_reader_sample import RelikReaderSample
from relik.reader.relik_reader_predictor import RelikReaderPredictor
from relik.reader.utils.metrics import compute_metrics


class StrongMatching:
    def __call__(self, predicted_samples: List[RelikReaderSample]) -> Dict:
        # accumulators
        correct_predictions, total_predictions, total_gold = (
            0,
            0,
            0,
        )
        correct_predictions_strict, total_predictions_strict = (
            0,
            0,
        )
        correct_predictions_bound, total_predictions_bound = (
            0,
            0,
        )
        correct_span_predictions, total_span_predictions, total_gold_spans = (
            0,
            0,
            0,
        )
        (
            correct_span_in_triplets_predictions,
            total_span_in_triplets_predictions,
            total_gold_spans_in_triplets,
        ) = (
            0,
            0,
            0,
        )

        # collect data from samples
        for sample in predicted_samples:
            if sample.triplets is None:
                sample.triplets = []

            if sample.span_candidates:
                predicted_annotations_strict = set(
                    [
                        (
                            triplet["subject"]["start"],
                            triplet["subject"]["end"],
                            triplet["subject"]["type"],
                            triplet["relation"]["name"],
                            triplet["object"]["start"],
                            triplet["object"]["end"],
                            triplet["object"]["type"],
                        )
                        for triplet in sample.predicted_relations
                    ]
                )
                gold_annotations_strict = set(
                    [
                        (
                            triplet["subject"]["start"],
                            triplet["subject"]["end"],
                            triplet["subject"]["type"],
                            triplet["relation"]["name"],
                            triplet["object"]["start"],
                            triplet["object"]["end"],
                            triplet["object"]["type"],
                        )
                        for triplet in sample.triplets
                    ]
                )
                predicted_spans_strict = set((ss, se, st) for (ss, se, st) in sample.predicted_entities)
                gold_spans_strict = set(sample.entities)
                predicted_spans_in_triplets = set(
                    [
                        (
                            triplet["subject"]["start"],
                            triplet["subject"]["end"],
                            triplet["subject"]["type"],
                        )
                        for triplet in sample.predicted_relations
                    ]
                    + [
                        (
                            triplet["object"]["start"],
                            triplet["object"]["end"],
                            triplet["object"]["type"],
                        )
                        for triplet in sample.predicted_relations
                    ]
                )
                gold_spans_in_triplets = set(
                    [
                        (
                            triplet["subject"]["start"],
                            triplet["subject"]["end"],
                            triplet["subject"]["type"],
                        )
                        for triplet in sample.triplets
                    ]
                    + [
                        (
                            triplet["object"]["start"],
                            triplet["object"]["end"],
                            triplet["object"]["type"],
                        )
                        for triplet in sample.triplets
                    ]
                )
                # strict
                correct_span_predictions += len(
                    predicted_spans_strict.intersection(gold_spans_strict)
                )
                total_span_predictions += len(predicted_spans_strict)

                correct_span_in_triplets_predictions += len(
                    predicted_spans_in_triplets.intersection(gold_spans_in_triplets)
                )
                total_span_in_triplets_predictions += len(predicted_spans_in_triplets)
                total_gold_spans_in_triplets += len(gold_spans_in_triplets)

                correct_predictions_strict += len(
                    predicted_annotations_strict.intersection(gold_annotations_strict)
                )
                total_predictions_strict += len(predicted_annotations_strict)

            predicted_annotations = set(
                [
                    (
                        triplet["subject"]["start"],
                        triplet["subject"]["end"],
                        -1,
                        triplet["relation"]["name"],
                        triplet["object"]["start"],
                        triplet["object"]["end"],
                        -1,
                    )
                    for triplet in sample.predicted_relations
                ]
            )
            gold_annotations = set(
                [
                    (
                        triplet["subject"]["start"],
                        triplet["subject"]["end"],
                        -1,
                        triplet["relation"]["name"],
                        triplet["object"]["start"],
                        triplet["object"]["end"],
                        -1,
                    )
                    for triplet in sample.triplets
                ]
            )
            predicted_spans = set(
                [(ss, se) for (ss, se, _) in sample.predicted_entities]
            )
            gold_spans = set([(ss, se) for (ss, se, _) in sample.entities])
            total_gold_spans += len(gold_spans)

            correct_predictions_bound += len(predicted_spans.intersection(gold_spans))
            total_predictions_bound += len(predicted_spans)

            total_predictions += len(predicted_annotations)
            total_gold += len(gold_annotations)
            # correct relation extraction
            correct_predictions += len(
                predicted_annotations.intersection(gold_annotations)
            )

        span_precision, span_recall, span_f1 = compute_metrics(
            correct_span_predictions, total_span_predictions, total_gold_spans
        )
        bound_precision, bound_recall, bound_f1 = compute_metrics(
            correct_predictions_bound, total_predictions_bound, total_gold_spans
        )

        precision, recall, f1 = compute_metrics(
            correct_predictions, total_predictions, total_gold
        )

        if sample.span_candidates:
            precision_strict, recall_strict, f1_strict = compute_metrics(
                correct_predictions_strict, total_predictions_strict, total_gold
            )
            (
                span_in_triplet_precisiion,
                span_in_triplet_recall,
                span_in_triplet_f1,
            ) = compute_metrics(
                correct_span_in_triplets_predictions,
                total_span_in_triplets_predictions,
                total_gold_spans_in_triplets,
            )
            return {
                "span-precision-strict": span_precision,
                "span-recall-strict": span_recall,
                "span-f1-strict": span_f1,
                "span-precision": bound_precision,
                "span-recall": bound_recall,
                "span-f1": bound_f1,
                "span-in-triplet-precision": span_in_triplet_precisiion,
                "span-in-triplet-recall": span_in_triplet_recall,
                "span-in-triplet-f1": span_in_triplet_f1,
                "precision": precision,
                "recall": recall,
                "f1": f1,
                "precision-strict": precision_strict,
                "recall-strict": recall_strict,
                "f1-strict": f1_strict,
            }
        else:
            return {
                "span-precision": bound_precision,
                "span-recall": bound_recall,
                "span-f1": bound_f1,
                "precision": precision,
                "recall": recall,
                "f1": f1,
            }

class StrongMatchingPerRelation:
    def __call__(self, predicted_samples: List[RelikReaderSample]) -> Dict:
        correct_predictions, total_predictions, total_gold = (
            defaultdict(int),
            defaultdict(int),
            defaultdict(int),
        )
        correct_predictions_strict, total_predictions_strict = (
            defaultdict(int),
            defaultdict(int),
        )
        # collect data from samples
        for sample in predicted_samples:
            if sample.triplets is None:
                sample.triplets = []

            if sample.span_candidates:
                gold_annotations_strict = set(
                    [
                        (
                            triplet["subject"]["start"],
                            triplet["subject"]["end"],
                            triplet["subject"]["type"],
                            triplet["relation"]["name"],
                            triplet["object"]["start"],
                            triplet["object"]["end"],
                            triplet["object"]["type"],
                        )
                        for triplet in sample.triplets
                    ]
                )
                # compute correct preds per triplet["relation"]["name"]
                for triplet in sample.predicted_relations:
                    predicted_annotations_strict = (
                        triplet["subject"]["start"],
                        triplet["subject"]["end"],
                        triplet["subject"]["type"],
                        triplet["relation"]["name"],
                        triplet["object"]["start"],
                        triplet["object"]["end"],
                        triplet["object"]["type"],
                    )
                    if predicted_annotations_strict in gold_annotations_strict:
                        correct_predictions_strict[triplet["relation"]["name"]] += 1
                    total_predictions_strict[triplet["relation"]["name"]] += 1
            gold_annotations = set(
                [
                    (
                        triplet["subject"]["start"],
                        triplet["subject"]["end"],
                        -1,
                        triplet["relation"]["name"],
                        triplet["object"]["start"],
                        triplet["object"]["end"],
                        -1,
                    )
                    for triplet in sample.triplets
                ]
            )
            for triplet in sample.predicted_relations:
                predicted_annotations = (
                    triplet["subject"]["start"],
                    triplet["subject"]["end"],
                    -1,
                    triplet["relation"]["name"],
                    triplet["object"]["start"],
                    triplet["object"]["end"],
                    -1,
                )
                if predicted_annotations in gold_annotations:
                    correct_predictions[triplet["relation"]["name"]] += 1
                total_predictions[triplet["relation"]["name"]] += 1
            for triplet in sample.triplets:
                total_gold[triplet["relation"]["name"]] += 1
        metrics = {}
        metrics_non_zero = 0
        for relation in total_gold.keys():
            precision, recall, f1 = compute_metrics(
                correct_predictions[relation],
                total_predictions[relation],
                total_gold[relation],
            )
            metrics[f"{relation}-precision"] = precision
            metrics[f"{relation}-recall"] = recall
            metrics[f"{relation}-f1"] = f1
            precision_strict, recall_strict, f1_strict = compute_metrics(
                correct_predictions_strict[relation],
                total_predictions_strict[relation],
                total_gold[relation],
            )
            metrics[f"{relation}-precision-strict"] = precision_strict
            metrics[f"{relation}-recall-strict"] = recall_strict
            metrics[f"{relation}-f1-strict"] = f1_strict
            if metrics[f"{relation}-f1-strict"] > 0:
                metrics_non_zero += 1
            # print in a readable way
            print(
                f"{relation}  precision:  {precision:.4f}  recall:  {recall:.4f}  f1:  {f1:.4f}  precision_strict:  {precision_strict:.4f}  recall_strict:  {recall_strict:.4f}  f1_strict:  {f1_strict:.4f}  support:  {total_gold[relation]}"
            )
        print(f"metrics_non_zero: {metrics_non_zero}")
        return metrics

class REStrongMatchingCallback(Callback):
    def __init__(self, dataset_path: str, dataset_conf, log_metric: str = "val_") -> None:
        super().__init__()
        self.dataset_path = dataset_path
        self.dataset_conf = dataset_conf
        self.strong_matching_metric = StrongMatching()
        self.log_metric = log_metric

    def on_validation_epoch_start(self, trainer, pl_module) -> None:
        dataloader = trainer.val_dataloaders
        if (
            self.dataset_path == dataloader.dataset.dataset_path
            and dataloader.dataset.samples is not None
            and len(dataloader.dataset.samples) > 0
        ):
            relik_reader_predictor = RelikReaderPredictor(
                pl_module.relik_reader_re_model, dataloader=trainer.val_dataloaders
            )
        else:
            relik_reader_predictor = RelikReaderPredictor(
                pl_module.relik_reader_re_model
            )
        predicted_samples = relik_reader_predictor._predict(
            self.dataset_path,
            None,
            self.dataset_conf,
        )
        predicted_samples = list(predicted_samples)
        for sample in predicted_samples:
            RelikREDataset._convert_annotations(sample)
        for k, v in self.strong_matching_metric(predicted_samples).items():
            pl_module.log(f"{self.log_metric}{k}", v)