File size: 35,933 Bytes
626eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
import logging
from typing import (
Any,
Callable,
Dict,
Generator,
Iterable,
Iterator,
List,
NamedTuple,
Optional,
Tuple,
Union,
)
import numpy as np
import torch
from torch.utils.data import IterableDataset
from tqdm import tqdm
from transformers import AutoTokenizer, PreTrainedTokenizer
from relik.reader.data.relik_reader_data_utils import (
add_noise_to_value,
batchify,
chunks,
flatten,
)
from relik.reader.data.relik_reader_sample import (
RelikReaderSample,
load_relik_reader_samples,
)
from relik.reader.utils.special_symbols import NME_SYMBOL
logger = logging.getLogger(__name__)
def preprocess_dataset(
input_dataset: Iterable[dict],
transformer_model: str,
add_topic: bool,
) -> Iterable[dict]:
tokenizer = AutoTokenizer.from_pretrained(transformer_model)
for dataset_elem in tqdm(input_dataset, desc="Preprocessing input dataset"):
if len(dataset_elem["tokens"]) == 0:
print(
f"Dataset element with doc id: {dataset_elem['doc_id']}",
f"and offset {dataset_elem['offset']} does not contain any token",
"Skipping it",
)
continue
new_dataset_elem = dict(
doc_id=dataset_elem["doc_id"],
offset=dataset_elem["offset"],
)
tokenization_out = tokenizer(
dataset_elem["tokens"],
return_offsets_mapping=True,
add_special_tokens=False,
)
window_tokens = tokenization_out.input_ids
window_tokens = flatten(window_tokens)
offsets_mapping = [
[
(
ss + dataset_elem["token2char_start"][str(i)],
se + dataset_elem["token2char_start"][str(i)],
)
for ss, se in tokenization_out.offset_mapping[i]
]
for i in range(len(dataset_elem["tokens"]))
]
offsets_mapping = flatten(offsets_mapping)
assert len(offsets_mapping) == len(window_tokens)
window_tokens = (
[tokenizer.cls_token_id] + window_tokens + [tokenizer.sep_token_id]
)
topic_offset = 0
if add_topic:
topic_tokens = tokenizer(
dataset_elem["doc_topic"], add_special_tokens=False
).input_ids
topic_offset = len(topic_tokens)
new_dataset_elem["topic_tokens"] = topic_offset
window_tokens = window_tokens[:1] + topic_tokens + window_tokens[1:]
new_dataset_elem.update(
dict(
tokens=window_tokens,
token2char_start={
str(i): s
for i, (s, _) in enumerate(offsets_mapping, start=topic_offset)
},
token2char_end={
str(i): e
for i, (_, e) in enumerate(offsets_mapping, start=topic_offset)
},
window_candidates=dataset_elem["window_candidates"],
window_candidates_scores=dataset_elem.get("window_candidates_scores"),
)
)
if "window_labels" in dataset_elem:
window_labels = [
(s, e, l.replace("_", " ")) for s, e, l in dataset_elem["window_labels"]
]
new_dataset_elem["window_labels"] = window_labels
if not all(
[
s in new_dataset_elem["token2char_start"].values()
for s, _, _ in new_dataset_elem["window_labels"]
]
):
print(
"Mismatching token start char mapping with labels",
new_dataset_elem["token2char_start"],
new_dataset_elem["window_labels"],
dataset_elem["tokens"],
)
continue
if not all(
[
e in new_dataset_elem["token2char_end"].values()
for _, e, _ in new_dataset_elem["window_labels"]
]
):
print(
"Mismatching token end char mapping with labels",
new_dataset_elem["token2char_end"],
new_dataset_elem["window_labels"],
dataset_elem["tokens"],
)
continue
yield new_dataset_elem
def preprocess_sample(
relik_sample: RelikReaderSample,
tokenizer,
lowercase_policy: float,
add_topic: bool = False,
) -> None:
if len(relik_sample.tokens) == 0:
return
if lowercase_policy > 0:
lc_tokens = np.random.uniform(0, 1, len(relik_sample.tokens)) < lowercase_policy
relik_sample.tokens = [
t.lower() if lc else t for t, lc in zip(relik_sample.tokens, lc_tokens)
]
tokenization_out = tokenizer(
relik_sample.tokens,
return_offsets_mapping=True,
add_special_tokens=False,
)
window_tokens = tokenization_out.input_ids
window_tokens = flatten(window_tokens)
offsets_mapping = [
[
(
ss + relik_sample.token2char_start[str(i)],
se + relik_sample.token2char_start[str(i)],
)
for ss, se in tokenization_out.offset_mapping[i]
]
for i in range(len(relik_sample.tokens))
]
offsets_mapping = flatten(offsets_mapping)
assert len(offsets_mapping) == len(window_tokens)
window_tokens = [tokenizer.cls_token_id] + window_tokens + [tokenizer.sep_token_id]
topic_offset = 0
if add_topic:
topic_tokens = tokenizer(
relik_sample.doc_topic, add_special_tokens=False
).input_ids
topic_offset = len(topic_tokens)
relik_sample.topic_tokens = topic_offset
window_tokens = window_tokens[:1] + topic_tokens + window_tokens[1:]
relik_sample._d.update(
dict(
tokens=window_tokens,
token2char_start={
str(i): s
for i, (s, _) in enumerate(offsets_mapping, start=topic_offset)
},
token2char_end={
str(i): e
for i, (_, e) in enumerate(offsets_mapping, start=topic_offset)
},
)
)
if "window_labels" in relik_sample._d:
relik_sample.window_labels = [
(s, e, l.replace("_", " ")) for s, e, l in relik_sample.window_labels
]
class TokenizationOutput(NamedTuple):
input_ids: torch.Tensor
attention_mask: torch.Tensor
token_type_ids: torch.Tensor
prediction_mask: torch.Tensor
special_symbols_mask: torch.Tensor
class RelikDataset(IterableDataset):
def __init__(
self,
dataset_path: Optional[str],
materialize_samples: bool,
transformer_model: Union[str, PreTrainedTokenizer],
special_symbols: List[str],
shuffle_candidates: Optional[Union[bool, float]] = False,
for_inference: bool = False,
noise_param: float = 0.1,
sorting_fields: Optional[str] = None,
tokens_per_batch: int = 2048,
batch_size: int = None,
max_batch_size: int = 128,
section_size: int = 50_000,
prebatch: bool = True,
random_drop_gold_candidates: float = 0.0,
use_nme: bool = True,
max_subwords_per_candidate: bool = 22,
mask_by_instances: bool = False,
min_length: int = 5,
max_length: int = 2048,
model_max_length: int = 1000,
split_on_cand_overload: bool = True,
skip_empty_training_samples: bool = False,
drop_last: bool = False,
samples: Optional[Iterator[RelikReaderSample]] = None,
lowercase_policy: float = 0.0,
**kwargs,
):
super().__init__(**kwargs)
self.dataset_path = dataset_path
self.materialize_samples = materialize_samples
self.samples: Optional[List[RelikReaderSample]] = None
if self.materialize_samples:
self.samples = list()
if isinstance(transformer_model, str):
self.tokenizer = self._build_tokenizer(transformer_model, special_symbols)
else:
self.tokenizer = transformer_model
self.special_symbols = special_symbols
self.shuffle_candidates = shuffle_candidates
self.for_inference = for_inference
self.noise_param = noise_param
self.batching_fields = ["input_ids"]
self.sorting_fields = (
sorting_fields if sorting_fields is not None else self.batching_fields
)
self.tokens_per_batch = tokens_per_batch
self.batch_size = batch_size
self.max_batch_size = max_batch_size
self.section_size = section_size
self.prebatch = prebatch
self.random_drop_gold_candidates = random_drop_gold_candidates
self.use_nme = use_nme
self.max_subwords_per_candidate = max_subwords_per_candidate
self.mask_by_instances = mask_by_instances
self.min_length = min_length
self.max_length = max_length
self.model_max_length = (
model_max_length
if model_max_length < self.tokenizer.model_max_length
else self.tokenizer.model_max_length
)
# retrocompatibility workaround
self.transformer_model = (
transformer_model
if isinstance(transformer_model, str)
else transformer_model.name_or_path
)
self.split_on_cand_overload = split_on_cand_overload
self.skip_empty_training_samples = skip_empty_training_samples
self.drop_last = drop_last
self.lowercase_policy = lowercase_policy
self.samples = samples
def _build_tokenizer(self, transformer_model: str, special_symbols: List[str]):
return AutoTokenizer.from_pretrained(
transformer_model,
additional_special_tokens=[ss for ss in special_symbols],
add_prefix_space=True,
)
@property
def fields_batcher(self) -> Dict[str, Union[None, Callable[[list], Any]]]:
fields_batchers = {
"input_ids": lambda x: batchify(
x, padding_value=self.tokenizer.pad_token_id
),
"attention_mask": lambda x: batchify(x, padding_value=0),
"token_type_ids": lambda x: batchify(x, padding_value=0),
"prediction_mask": lambda x: batchify(x, padding_value=1),
"global_attention": lambda x: batchify(x, padding_value=0),
"token2word": None,
"sample": None,
"special_symbols_mask": lambda x: batchify(x, padding_value=False),
"start_labels": lambda x: batchify(x, padding_value=-100),
"end_labels": lambda x: batchify(x, padding_value=-100),
"predictable_candidates_symbols": None,
"predictable_candidates": None,
"patch_offset": None,
"optimus_labels": None,
}
if "roberta" in self.transformer_model:
del fields_batchers["token_type_ids"]
return fields_batchers
def _build_input_ids(
self, sentence_input_ids: List[int], candidates_input_ids: List[List[int]]
) -> List[int]:
return (
[self.tokenizer.cls_token_id]
+ sentence_input_ids
+ [self.tokenizer.sep_token_id]
+ flatten(candidates_input_ids)
+ [self.tokenizer.sep_token_id]
)
def _get_special_symbols_mask(self, input_ids: torch.Tensor) -> torch.Tensor:
special_symbols_mask = input_ids >= (
len(self.tokenizer) - len(self.special_symbols)
)
special_symbols_mask[0] = True
return special_symbols_mask
def _build_tokenizer_essentials(
self, input_ids, original_sequence, sample
) -> TokenizationOutput:
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
total_sequence_len = len(input_ids)
predictable_sentence_len = len(original_sequence)
# token type ids
token_type_ids = torch.cat(
[
input_ids.new_zeros(
predictable_sentence_len + 2
), # original sentence bpes + CLS and SEP
input_ids.new_ones(total_sequence_len - predictable_sentence_len - 2),
]
)
# prediction mask -> boolean on tokens that are predictable
prediction_mask = torch.tensor(
[1]
+ ([0] * predictable_sentence_len)
+ ([1] * (total_sequence_len - predictable_sentence_len - 1))
)
# add topic tokens to the prediction mask so that they cannot be predicted
# or optimized during training
topic_tokens = getattr(sample, "topic_tokens", None)
if topic_tokens is not None:
prediction_mask[1 : 1 + topic_tokens] = 1
# If mask by instances is active the prediction mask is applied to everything
# that is not indicated as an instance in the training set.
if self.mask_by_instances:
char_start2token = {
cs: int(tok) for tok, cs in sample.token2char_start.items()
}
char_end2token = {ce: int(tok) for tok, ce in sample.token2char_end.items()}
instances_mask = torch.ones_like(prediction_mask)
for _, span_info in sample.instance_id2span_data.items():
span_info = span_info[0]
token_start = char_start2token[span_info[0]] + 1 # +1 for the CLS
token_end = char_end2token[span_info[1]] + 1 # +1 for the CLS
instances_mask[token_start : token_end + 1] = 0
prediction_mask += instances_mask
prediction_mask[prediction_mask > 1] = 1
assert len(prediction_mask) == len(input_ids)
# special symbols mask
special_symbols_mask = self._get_special_symbols_mask(input_ids)
return TokenizationOutput(
input_ids,
attention_mask,
token_type_ids,
prediction_mask,
special_symbols_mask,
)
def _build_labels(
self,
sample,
tokenization_output: TokenizationOutput,
predictable_candidates: List[str],
) -> Tuple[torch.Tensor, torch.Tensor]:
start_labels = [0] * len(tokenization_output.input_ids)
end_labels = [0] * len(tokenization_output.input_ids)
char_start2token = {v: int(k) for k, v in sample.token2char_start.items()}
char_end2token = {v: int(k) for k, v in sample.token2char_end.items()}
for cs, ce, gold_candidate_title in sample.window_labels:
if gold_candidate_title not in predictable_candidates:
if self.use_nme:
gold_candidate_title = NME_SYMBOL
else:
continue
# +1 is to account for the CLS token
start_bpe = char_start2token[cs] + 1
end_bpe = char_end2token[ce] + 1
class_index = predictable_candidates.index(gold_candidate_title)
if (
start_labels[start_bpe] == 0 and end_labels[end_bpe] == 0
): # prevent from having entities that ends with the same label
start_labels[start_bpe] = class_index + 1 # +1 for the NONE class
end_labels[end_bpe] = class_index + 1 # +1 for the NONE class
else:
print(
"Found entity with the same last subword, it will not be included."
)
print(
cs,
ce,
gold_candidate_title,
start_labels,
end_labels,
sample.doc_id,
)
ignored_labels_indices = tokenization_output.prediction_mask == 1
start_labels = torch.tensor(start_labels, dtype=torch.long)
start_labels[ignored_labels_indices] = -100
end_labels = torch.tensor(end_labels, dtype=torch.long)
end_labels[ignored_labels_indices] = -100
return start_labels, end_labels
def produce_sample_bag(
self, sample, predictable_candidates: List[str], candidates_starting_offset: int
) -> Optional[Tuple[dict, list, int]]:
# input sentence tokenization
input_subwords = sample.tokens[1:-1] # removing special tokens
candidates_symbols = self.special_symbols[candidates_starting_offset:]
predictable_candidates = list(predictable_candidates)
original_predictable_candidates = list(predictable_candidates)
# add NME as a possible candidate
if self.use_nme:
predictable_candidates.insert(0, NME_SYMBOL)
# candidates encoding
candidates_symbols = candidates_symbols[: len(predictable_candidates)]
candidates_encoding_result = self.tokenizer.batch_encode_plus(
[
"{} {}".format(cs, ct) if ct != NME_SYMBOL else NME_SYMBOL
for cs, ct in zip(candidates_symbols, predictable_candidates)
],
add_special_tokens=False,
).input_ids
if (
self.max_subwords_per_candidate is not None
and self.max_subwords_per_candidate > 0
):
candidates_encoding_result = [
cer[: self.max_subwords_per_candidate]
for cer in candidates_encoding_result
]
# drop candidates if the number of input tokens is too long for the model
if (
sum(map(len, candidates_encoding_result))
+ len(input_subwords)
+ 20 # + 20 special tokens
> self.model_max_length
):
acceptable_tokens_from_candidates = (
self.model_max_length - 20 - len(input_subwords)
)
i = 0
cum_len = 0
while (
cum_len + len(candidates_encoding_result[i])
< acceptable_tokens_from_candidates
):
cum_len += len(candidates_encoding_result[i])
i += 1
candidates_encoding_result = candidates_encoding_result[:i]
candidates_symbols = candidates_symbols[:i]
predictable_candidates = predictable_candidates[:i]
# final input_ids build
input_ids = self._build_input_ids(
sentence_input_ids=input_subwords,
candidates_input_ids=candidates_encoding_result,
)
# complete input building (e.g. attention / prediction mask)
tokenization_output = self._build_tokenizer_essentials(
input_ids, input_subwords, sample
)
output_dict = {
"input_ids": tokenization_output.input_ids,
"attention_mask": tokenization_output.attention_mask,
"token_type_ids": tokenization_output.token_type_ids,
"prediction_mask": tokenization_output.prediction_mask,
"special_symbols_mask": tokenization_output.special_symbols_mask,
"sample": sample,
"predictable_candidates_symbols": candidates_symbols,
"predictable_candidates": predictable_candidates,
}
# labels creation
if sample.window_labels is not None:
start_labels, end_labels = self._build_labels(
sample,
tokenization_output,
predictable_candidates,
)
output_dict.update(start_labels=start_labels, end_labels=end_labels)
if (
"roberta" in self.transformer_model
or "longformer" in self.transformer_model
):
del output_dict["token_type_ids"]
predictable_candidates_set = set(predictable_candidates)
remaining_candidates = [
candidate
for candidate in original_predictable_candidates
if candidate not in predictable_candidates_set
]
total_used_candidates = (
candidates_starting_offset
+ len(predictable_candidates)
- (1 if self.use_nme else 0)
)
if self.use_nme:
assert predictable_candidates[0] == NME_SYMBOL
return output_dict, remaining_candidates, total_used_candidates
def __iter__(self):
dataset_iterator = self.dataset_iterator_func()
current_dataset_elements = []
i = None
for i, dataset_elem in enumerate(dataset_iterator, start=1):
if (
self.section_size is not None
and len(current_dataset_elements) == self.section_size
):
for batch in self.materialize_batches(current_dataset_elements):
yield batch
current_dataset_elements = []
current_dataset_elements.append(dataset_elem)
if i % 50_000 == 0:
logger.info(f"Processed: {i} number of elements")
if len(current_dataset_elements) != 0:
for batch in self.materialize_batches(current_dataset_elements):
yield batch
if i is not None:
logger.info(f"Dataset finished: {i} number of elements processed")
else:
logger.warning("Dataset empty")
def dataset_iterator_func(self):
skipped_instances = 0
data_samples = (
load_relik_reader_samples(self.dataset_path)
if self.samples is None
else self.samples
)
for sample in data_samples:
preprocess_sample(
sample, self.tokenizer, lowercase_policy=self.lowercase_policy
)
current_patch = 0
sample_bag, used_candidates = None, None
remaining_candidates = list(sample.window_candidates)
if not self.for_inference:
# randomly drop gold candidates at training time
if (
self.random_drop_gold_candidates > 0.0
and np.random.uniform() < self.random_drop_gold_candidates
and len(set(ct for _, _, ct in sample.window_labels)) > 1
):
# selecting candidates to drop
np.random.shuffle(sample.window_labels)
n_dropped_candidates = np.random.randint(
0, len(sample.window_labels) - 1
)
dropped_candidates = [
label_elem[-1]
for label_elem in sample.window_labels[:n_dropped_candidates]
]
dropped_candidates = set(dropped_candidates)
# saving NMEs because they should not be dropped
if NME_SYMBOL in dropped_candidates:
dropped_candidates.remove(NME_SYMBOL)
# sample update
sample.window_labels = [
(s, e, _l)
if _l not in dropped_candidates
else (s, e, NME_SYMBOL)
for s, e, _l in sample.window_labels
]
remaining_candidates = [
wc
for wc in remaining_candidates
if wc not in dropped_candidates
]
# shuffle candidates
if (
isinstance(self.shuffle_candidates, bool)
and self.shuffle_candidates
) or (
isinstance(self.shuffle_candidates, float)
and np.random.uniform() < self.shuffle_candidates
):
np.random.shuffle(remaining_candidates)
while len(remaining_candidates) != 0:
sample_bag = self.produce_sample_bag(
sample,
predictable_candidates=remaining_candidates,
candidates_starting_offset=used_candidates
if used_candidates is not None
else 0,
)
if sample_bag is not None:
sample_bag, remaining_candidates, used_candidates = sample_bag
if (
self.for_inference
or not self.skip_empty_training_samples
or (
(
sample_bag.get("start_labels") is not None
and torch.any(sample_bag["start_labels"] > 1).item()
)
or (
sample_bag.get("optimus_labels") is not None
and len(sample_bag["optimus_labels"]) > 0
)
)
):
sample_bag["patch_offset"] = current_patch
current_patch += 1
yield sample_bag
else:
skipped_instances += 1
if skipped_instances % 1000 == 0 and skipped_instances != 0:
logger.info(
f"Skipped {skipped_instances} instances since they did not have any gold labels..."
)
# Just use the first fitting candidates if split on
# cand is not True
if not self.split_on_cand_overload:
break
def preshuffle_elements(self, dataset_elements: List):
# This shuffling is done so that when using the sorting function,
# if it is deterministic given a collection and its order, we will
# make the whole operation not deterministic anymore.
# Basically, the aim is not to build every time the same batches.
if not self.for_inference:
dataset_elements = np.random.permutation(dataset_elements)
sorting_fn = (
lambda elem: add_noise_to_value(
sum(len(elem[k]) for k in self.sorting_fields),
noise_param=self.noise_param,
)
if not self.for_inference
else sum(len(elem[k]) for k in self.sorting_fields)
)
dataset_elements = sorted(dataset_elements, key=sorting_fn)
if self.for_inference:
return dataset_elements
ds = list(chunks(dataset_elements, 64))
np.random.shuffle(ds)
return flatten(ds)
def materialize_batches(
self, dataset_elements: List[Dict[str, Any]]
) -> Generator[Dict[str, Any], None, None]:
if self.prebatch:
dataset_elements = self.preshuffle_elements(dataset_elements)
current_batch = []
# function that creates a batch from the 'current_batch' list
def output_batch() -> Dict[str, Any]:
assert (
len(
set([len(elem["predictable_candidates"]) for elem in current_batch])
)
== 1
), " ".join(
map(
str, [len(elem["predictable_candidates"]) for elem in current_batch]
)
)
batch_dict = dict()
de_values_by_field = {
fn: [de[fn] for de in current_batch if fn in de]
for fn in self.fields_batcher
}
# in case you provide fields batchers but in the batch
# there are no elements for that field
de_values_by_field = {
fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0
}
assert len(set([len(v) for v in de_values_by_field.values()]))
# todo: maybe we should report the user about possible
# fields filtering due to "None" instances
de_values_by_field = {
fn: fvs
for fn, fvs in de_values_by_field.items()
if all([fv is not None for fv in fvs])
}
for field_name, field_values in de_values_by_field.items():
field_batch = (
self.fields_batcher[field_name](field_values)
if self.fields_batcher[field_name] is not None
else field_values
)
batch_dict[field_name] = field_batch
return batch_dict
max_len_discards, min_len_discards = 0, 0
should_token_batch = self.batch_size is None
curr_pred_elements = -1
for de in dataset_elements:
if (
should_token_batch
and self.max_batch_size != -1
and len(current_batch) == self.max_batch_size
) or (not should_token_batch and len(current_batch) == self.batch_size):
yield output_batch()
current_batch = []
curr_pred_elements = -1
too_long_fields = [
k
for k in de
if self.max_length != -1
and torch.is_tensor(de[k])
and len(de[k]) > self.max_length
]
if len(too_long_fields) > 0:
max_len_discards += 1
continue
too_short_fields = [
k
for k in de
if self.min_length != -1
and torch.is_tensor(de[k])
and len(de[k]) < self.min_length
]
if len(too_short_fields) > 0:
min_len_discards += 1
continue
if should_token_batch:
de_len = sum(len(de[k]) for k in self.batching_fields)
future_max_len = max(
de_len,
max(
[
sum(len(bde[k]) for k in self.batching_fields)
for bde in current_batch
],
default=0,
),
)
future_tokens_per_batch = future_max_len * (len(current_batch) + 1)
num_predictable_candidates = len(de["predictable_candidates"])
if len(current_batch) > 0 and (
future_tokens_per_batch >= self.tokens_per_batch
or (
num_predictable_candidates != curr_pred_elements
and curr_pred_elements != -1
)
):
yield output_batch()
current_batch = []
current_batch.append(de)
curr_pred_elements = len(de["predictable_candidates"])
if len(current_batch) != 0 and not self.drop_last:
yield output_batch()
if max_len_discards > 0:
if self.for_inference:
logger.warning(
f"WARNING: Inference mode is True but {max_len_discards} samples longer than max length were "
f"found. The {max_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
f", this can INVALIDATE results. This might happen if the max length was not set to -1 or if the "
f"sample length exceeds the maximum length supported by the current model."
)
else:
logger.warning(
f"During iteration, {max_len_discards} elements were "
f"discarded since longer than max length {self.max_length}"
)
if min_len_discards > 0:
if self.for_inference:
logger.warning(
f"WARNING: Inference mode is True but {min_len_discards} samples shorter than min length were "
f"found. The {min_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
f", this can INVALIDATE results. This might happen if the min length was not set to -1 or if the "
f"sample length is shorter than the minimum length supported by the current model."
)
else:
logger.warning(
f"During iteration, {min_len_discards} elements were "
f"discarded since shorter than min length {self.min_length}"
)
@staticmethod
def convert_tokens_to_char_annotations(
sample: RelikReaderSample,
remove_nmes: bool = True,
) -> RelikReaderSample:
"""
Converts the token annotations to char annotations.
Args:
sample (:obj:`RelikReaderSample`):
The sample to convert.
remove_nmes (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to remove the NMEs from the annotations.
Returns:
:obj:`RelikReaderSample`: The converted sample.
"""
char_annotations = set()
for (
predicted_entity,
predicted_spans,
) in sample.predicted_window_labels.items():
if predicted_entity == NME_SYMBOL and remove_nmes:
continue
for span_start, span_end in predicted_spans:
span_start = sample.token2char_start[str(span_start)]
span_end = sample.token2char_end[str(span_end)]
char_annotations.add((span_start, span_end, predicted_entity))
char_probs_annotations = dict()
for (
span_start,
span_end,
), candidates_probs in sample.span_title_probabilities.items():
span_start = sample.token2char_start[str(span_start)]
span_end = sample.token2char_end[str(span_end)]
char_probs_annotations[(span_start, span_end)] = {
title for title, _ in candidates_probs
}
sample.predicted_window_labels_chars = char_annotations
sample.probs_window_labels_chars = char_probs_annotations
return sample
@staticmethod
def merge_patches_predictions(sample) -> None:
sample._d["predicted_window_labels"] = dict()
predicted_window_labels = sample._d["predicted_window_labels"]
sample._d["span_title_probabilities"] = dict()
span_title_probabilities = sample._d["span_title_probabilities"]
span2title = dict()
for _, patch_info in sorted(sample.patches.items(), key=lambda x: x[0]):
# selecting span predictions
for predicted_title, predicted_spans in patch_info[
"predicted_window_labels"
].items():
for pred_span in predicted_spans:
pred_span = tuple(pred_span)
curr_title = span2title.get(pred_span)
if curr_title is None or curr_title == NME_SYMBOL:
span2title[pred_span] = predicted_title
# else:
# print("Merging at patch level")
# selecting span predictions probability
for predicted_span, titles_probabilities in patch_info[
"span_title_probabilities"
].items():
if predicted_span not in span_title_probabilities:
span_title_probabilities[predicted_span] = titles_probabilities
for span, title in span2title.items():
if title not in predicted_window_labels:
predicted_window_labels[title] = list()
predicted_window_labels[title].append(span)
|