File size: 39,537 Bytes
2f044c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
from copy import deepcopy
import os
from pathlib import Path
from typing import List, Literal, Optional, Union
import hydra
import lightning as pl
import omegaconf
import torch
from lightning import Trainer
from lightning.pytorch.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
ModelSummary,
)
from lightning.pytorch.loggers import WandbLogger
from omegaconf import OmegaConf
from pprintpp import pformat
from relik.common.log import get_logger
from relik.retriever.callbacks.base import NLPTemplateCallback
from relik.retriever.callbacks.evaluation_callbacks import (
AvgRankingEvaluationCallback,
RecallAtKEvaluationCallback,
)
from relik.retriever.callbacks.prediction_callbacks import (
GoldenRetrieverPredictionCallback,
)
from relik.retriever.callbacks.training_callbacks import NegativeAugmentationCallback
from relik.retriever.callbacks.utils_callbacks import (
FreeUpIndexerVRAMCallback,
SavePredictionsCallback,
SaveRetrieverCallback,
)
from relik.retriever.data.datasets import GoldenRetrieverDataset
from relik.retriever.indexers.base import BaseDocumentIndex
from relik.retriever.lightning_modules.pl_data_modules import (
GoldenRetrieverPLDataModule,
)
from relik.retriever.lightning_modules.pl_modules import GoldenRetrieverPLModule
from relik.retriever.pytorch_modules.loss import MultiLabelNCELoss
from relik.retriever.pytorch_modules.model import GoldenRetriever
from relik.retriever.pytorch_modules.optim import RAdamW
from relik.retriever.pytorch_modules.scheduler import LinearScheduler
logger = get_logger(__name__)
class RetrieverTrainer:
def __init__(
self,
retriever: GoldenRetriever,
train_dataset: GoldenRetrieverDataset | None = None,
val_dataset: GoldenRetrieverDataset
| list[GoldenRetrieverDataset]
| None = None,
test_dataset: GoldenRetrieverDataset
| list[GoldenRetrieverDataset]
| None = None,
num_workers: int = 4,
optimizer: torch.optim.Optimizer = RAdamW,
lr: float = 1e-5,
weight_decay: float = 0.01,
lr_scheduler: torch.optim.lr_scheduler.LRScheduler = LinearScheduler,
num_warmup_steps: int = 0,
loss: torch.nn.Module = MultiLabelNCELoss,
callbacks: list | None = None,
accelerator: str = "auto",
devices: int = 1,
num_nodes: int = 1,
strategy: str = "auto",
accumulate_grad_batches: int = 1,
gradient_clip_val: float = 1.0,
val_check_interval: float = 1.0,
check_val_every_n_epoch: int = 1,
max_steps: int | None = None,
max_epochs: int | None = None,
deterministic: bool = True,
fast_dev_run: bool = False,
precision: int | str = 16,
reload_dataloaders_every_n_epochs: int = 1,
resume_from_checkpoint_path: str | os.PathLike | None = None,
trainer_kwargs: dict | None = None,
# eval parameters
metric_to_monitor: str = "validate_recall@{top_k}",
monitor_mode: str = "max",
top_k: int | List[int] = 100,
# early stopping parameters
early_stopping: bool = True,
early_stopping_patience: int = 10,
early_stopping_kwargs: dict | None = None,
# wandb logger parameters
log_to_wandb: bool = True,
wandb_entity: str | None = None,
wandb_experiment_name: str | None = None,
wandb_project_name: str = "golden-retriever",
wandb_save_dir: str | os.PathLike = "./", # TODO: i don't like this default
wandb_log_model: bool = True,
wandb_online_mode: bool = False,
wandb_watch: str = "all",
wandb_kwargs: dict | None = None,
# checkpoint parameters
model_checkpointing: bool = True,
checkpoint_dir: str | os.PathLike | None = None,
checkpoint_filename: str | os.PathLike | None = None,
save_top_k: int = 1,
save_last: bool = False,
checkpoint_kwargs: dict | None = None,
# prediction callback parameters
prediction_batch_size: int = 128,
# hard negatives callback parameters
max_hard_negatives_to_mine: int = 15,
hard_negatives_threshold: float = 0.0,
metrics_to_monitor_for_hard_negatives: str | None = None,
mine_hard_negatives_with_probability: float = 1.0,
# other parameters
seed: int = 42,
float32_matmul_precision: str = "medium",
**kwargs,
):
# put all the parameters in the class
self.retriever = retriever
# datasets
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.num_workers = num_workers
# trainer parameters
self.optimizer = optimizer
self.lr = lr
self.weight_decay = weight_decay
self.lr_scheduler = lr_scheduler
self.num_warmup_steps = num_warmup_steps
self.loss = loss
self.callbacks = callbacks
self.accelerator = accelerator
self.devices = devices
self.num_nodes = num_nodes
self.strategy = strategy
self.accumulate_grad_batches = accumulate_grad_batches
self.gradient_clip_val = gradient_clip_val
self.val_check_interval = val_check_interval
self.check_val_every_n_epoch = check_val_every_n_epoch
self.max_steps = max_steps
self.max_epochs = max_epochs
self.deterministic = deterministic
self.fast_dev_run = fast_dev_run
self.precision = precision
self.reload_dataloaders_every_n_epochs = reload_dataloaders_every_n_epochs
self.resume_from_checkpoint_path = resume_from_checkpoint_path
self.trainer_kwargs = trainer_kwargs or {}
# eval parameters
self.metric_to_monitor = metric_to_monitor
self.monitor_mode = monitor_mode
self.top_k = top_k
# early stopping parameters
self.early_stopping = early_stopping
self.early_stopping_patience = early_stopping_patience
self.early_stopping_kwargs = early_stopping_kwargs
# wandb logger parameters
self.log_to_wandb = log_to_wandb
self.wandb_entity = wandb_entity
self.wandb_experiment_name = wandb_experiment_name
self.wandb_project_name = wandb_project_name
self.wandb_save_dir = wandb_save_dir
self.wandb_log_model = wandb_log_model
self.wandb_online_mode = wandb_online_mode
self.wandb_watch = wandb_watch
self.wandb_kwargs = wandb_kwargs
# checkpoint parameters
self.model_checkpointing = model_checkpointing
self.checkpoint_dir = checkpoint_dir
self.checkpoint_filename = checkpoint_filename
self.save_top_k = save_top_k
self.save_last = save_last
self.checkpoint_kwargs = checkpoint_kwargs
# prediction callback parameters
self.prediction_batch_size = prediction_batch_size
# hard negatives callback parameters
self.max_hard_negatives_to_mine = max_hard_negatives_to_mine
self.hard_negatives_threshold = hard_negatives_threshold
self.metrics_to_monitor_for_hard_negatives = (
metrics_to_monitor_for_hard_negatives
)
self.mine_hard_negatives_with_probability = mine_hard_negatives_with_probability
# other parameters
self.seed = seed
self.float32_matmul_precision = float32_matmul_precision
if self.max_epochs is None and self.max_steps is None:
raise ValueError(
"Either `max_epochs` or `max_steps` should be specified in the trainer configuration"
)
if self.max_epochs is not None and self.max_steps is not None:
logger.info(
"Both `max_epochs` and `max_steps` are specified in the trainer configuration. "
"Will use `max_epochs` for the number of training steps"
)
self.max_steps = None
# reproducibility
pl.seed_everything(self.seed)
# set the precision of matmul operations
torch.set_float32_matmul_precision(self.float32_matmul_precision)
# lightning data module declaration
self.lightning_datamodule = self.configure_lightning_datamodule()
if self.max_epochs is not None:
logger.info(f"Number of training epochs: {self.max_epochs}")
self.max_steps = (
len(self.lightning_datamodule.train_dataloader()) * self.max_epochs
)
# optimizer declaration
self.optimizer, self.lr_scheduler = self.configure_optimizers()
# lightning module declaration
self.lightning_module = self.configure_lightning_module()
# logger and experiment declaration
# update self.wandb_kwargs
wandb_args = dict(
entity=self.wandb_entity,
project=self.wandb_project_name,
name=self.wandb_experiment_name,
save_dir=self.wandb_save_dir,
log_model=self.wandb_log_model,
offline=not self.wandb_online_mode,
watch=self.wandb_watch,
lightning_module=self.lightning_module,
)
if self.wandb_kwargs is not None:
wandb_args.update(self.wandb_kwargs)
self.wandb_kwargs = wandb_args
self.wandb_logger: Optional[WandbLogger] = None
self.experiment_path: Optional[Path] = None
# setup metrics to monitor for a bunch of callbacks
if isinstance(self.top_k, int):
self.top_k = [self.top_k]
# save the target top_k
self.target_top_k = self.top_k[0]
self.metric_to_monitor = self.metric_to_monitor.format(top_k=self.target_top_k)
# explicitly configure some callbacks that will be needed not only by the
# pl.Trainer but also in this class
# model checkpoint callback
if self.save_last:
logger.warning(
"We will override the `save_last` of `ModelCheckpoint` to `False`. "
"Instead, we will use a separate `ModelCheckpoint` callback to save the last checkpoint"
)
checkpoint_kwargs = dict(
monitor=self.metric_to_monitor,
mode=self.monitor_mode,
verbose=True,
save_top_k=self.save_top_k,
filename=self.checkpoint_filename,
dirpath=self.checkpoint_dir,
auto_insert_metric_name=False,
)
if self.checkpoint_kwargs is not None:
checkpoint_kwargs.update(self.checkpoint_kwargs)
self.checkpoint_kwargs = checkpoint_kwargs
self.model_checkpoint_callback: ModelCheckpoint | None = None
self.checkpoint_path: str | os.PathLike | None = None
# last checkpoint callback
self.latest_model_checkpoint_callback: ModelCheckpoint | None = None
self.last_checkpoint_kwargs: dict | None = None
if self.save_last:
last_checkpoint_kwargs = deepcopy(self.checkpoint_kwargs)
last_checkpoint_kwargs["save_top_k"] = 1
last_checkpoint_kwargs["filename"] = "last-{epoch}-{step}"
last_checkpoint_kwargs["monitor"] = "step"
last_checkpoint_kwargs["mode"] = "max"
self.last_checkpoint_kwargs = last_checkpoint_kwargs
# early stopping callback
early_stopping_kwargs = dict(
monitor=self.metric_to_monitor,
mode=self.monitor_mode,
patience=self.early_stopping_patience,
)
if self.early_stopping_kwargs is not None:
early_stopping_kwargs.update(self.early_stopping_kwargs)
self.early_stopping_kwargs = early_stopping_kwargs
self.early_stopping_callback: EarlyStopping | None = None
# other callbacks declaration
self.callbacks_store: List[pl.Callback] = [] # self.configure_callbacks()
# add default callbacks
self.callbacks_store += [
ModelSummary(max_depth=2),
LearningRateMonitor(logging_interval="step"),
]
# lazy trainer declaration
self.trainer: pl.Trainer | None = None
def configure_lightning_datamodule(self, *args, **kwargs):
# lightning data module declaration
if self.val_dataset is not None and isinstance(
self.val_dataset, GoldenRetrieverDataset
):
self.val_dataset = [self.val_dataset]
if self.test_dataset is not None and isinstance(
self.test_dataset, GoldenRetrieverDataset
):
self.test_dataset = [self.test_dataset]
self.lightning_datamodule = GoldenRetrieverPLDataModule(
train_dataset=self.train_dataset,
val_datasets=self.val_dataset,
test_datasets=self.test_dataset,
num_workers=self.num_workers,
*args,
**kwargs,
)
return self.lightning_datamodule
def configure_lightning_module(self, *args, **kwargs):
# add loss object to the retriever
if self.retriever.loss_type is None:
self.retriever.loss_type = self.loss()
# lightning module declaration
self.lightning_module = GoldenRetrieverPLModule(
model=self.retriever,
optimizer=self.optimizer,
lr_scheduler=self.lr_scheduler,
*args,
**kwargs,
)
return self.lightning_module
def configure_optimizers(self, *args, **kwargs):
# check if it is the class or the instance
if isinstance(self.optimizer, type):
param_optimizer = list(self.retriever.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in param_optimizer if "layer_norm_layer" in n
],
"weight_decay": self.weight_decay,
"lr": 1e-4,
},
{
"params": [
p
for n, p in param_optimizer
if all(nd not in n for nd in no_decay)
and "layer_norm_layer" not in n
],
"weight_decay": self.weight_decay,
},
{
"params": [
p
for n, p in param_optimizer
if "layer_norm_layer" not in n
and any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
self.optimizer = self.optimizer(
# params=self.retriever.parameters(),
params=optimizer_grouped_parameters,
lr=self.lr,
# weight_decay=self.weight_decay,
)
else:
self.optimizer = self.optimizer
# LR Scheduler declaration
# check if it is the class, the instance or a function
if self.lr_scheduler is not None:
if isinstance(self.lr_scheduler, type):
self.lr_scheduler = self.lr_scheduler(
optimizer=self.optimizer,
num_warmup_steps=self.num_warmup_steps,
num_training_steps=self.max_steps,
)
return self.optimizer, self.lr_scheduler
@staticmethod
def configure_logger(
name: str,
save_dir: str | os.PathLike,
offline: bool,
entity: str,
project: str,
log_model: Literal["all"] | bool,
watch: str | None = None,
lightning_module: torch.nn.Module | None = None,
*args,
**kwargs,
) -> WandbLogger:
"""
Configure the wandb logger
Args:
name (`str`):
The name of the experiment
save_dir (`str`, `os.PathLike`):
The directory where to save the experiment
offline (`bool`):
Whether to run wandb offline
entity (`str`):
The wandb entity
project (`str`):
The wandb project name
log_model (`Literal["all"]`, `bool`):
Whether to log the model to wandb
watch (`str`, optional, defaults to `None`):
The mode to watch the model
lightning_module (`torch.nn.Module`, optional, defaults to `None`):
The lightning module to watch
*args:
Additional args
**kwargs:
Additional kwargs
Returns:
`lightning.loggers.WandbLogger`:
The wandb logger
"""
wandb_logger = WandbLogger(
name=name,
save_dir=save_dir,
offline=offline,
project=project,
log_model=log_model and not offline,
entity=entity,
*args,
**kwargs,
)
if watch is not None and lightning_module is not None:
watch_kwargs = dict(model=lightning_module)
if watch is not None:
watch_kwargs["log"] = watch
wandb_logger.watch(**watch_kwargs)
return wandb_logger
@staticmethod
def configure_early_stopping(
monitor: str,
mode: str,
patience: int = 3,
*args,
**kwargs,
) -> EarlyStopping:
logger.info(f"Enabling EarlyStopping callback with patience: {patience}")
early_stopping_callback = EarlyStopping(
monitor=monitor,
mode=mode,
patience=patience,
*args,
**kwargs,
)
return early_stopping_callback
def configure_model_checkpoint(
self,
monitor: str,
mode: str,
verbose: bool = True,
save_top_k: int = 1,
save_last: bool = False,
filename: str | os.PathLike | None = None,
dirpath: str | os.PathLike | None = None,
auto_insert_metric_name: bool = False,
*args,
**kwargs,
) -> ModelCheckpoint:
logger.info("Enabling Model Checkpointing")
if dirpath is None:
dirpath = (
self.experiment_path / "checkpoints" if self.experiment_path else None
)
if filename is None:
filename = (
"checkpoint-" + monitor + "_{" + monitor + ":.4f}-epoch_{epoch:02d}"
)
self.checkpoint_path = dirpath / filename if dirpath is not None else None
logger.info(f"Checkpoint directory: {dirpath}")
logger.info(f"Checkpoint filename: {filename}")
kwargs = dict(
monitor=monitor,
mode=mode,
verbose=verbose,
save_top_k=save_top_k,
save_last=save_last,
filename=filename,
dirpath=dirpath,
auto_insert_metric_name=auto_insert_metric_name,
*args,
**kwargs,
)
# update the kwargs
# TODO: this is bad
# kwargs.update(
# dirpath=self.checkpoint_dir,
# filename=self.checkpoint_filename,
# )
# modelcheckpoint_kwargs = dict(
# dirpath=self.checkpoint_dir,
# filename=self.checkpoint_filename,
# )
# modelcheckpoint_kwargs.update(kwargs)
self.model_checkpoint_callback = ModelCheckpoint(**kwargs)
return self.model_checkpoint_callback
def configure_hard_negatives_callback(self):
metrics_to_monitor = (
self.metrics_to_monitor_for_hard_negatives or self.metric_to_monitor
)
hard_negatives_callback = NegativeAugmentationCallback(
k=self.target_top_k,
batch_size=self.prediction_batch_size,
precision=self.precision,
stages=["validate"],
metrics_to_monitor=metrics_to_monitor,
threshold=self.hard_negatives_threshold,
max_negatives=self.max_hard_negatives_to_mine,
add_with_probability=self.mine_hard_negatives_with_probability,
refresh_every_n_epochs=1,
)
return hard_negatives_callback
def training_callbacks(self):
if self.model_checkpointing:
self.model_checkpoint_callback = self.configure_model_checkpoint(
**self.checkpoint_kwargs
)
self.callbacks_store.append(self.model_checkpoint_callback)
if self.save_last:
self.latest_model_checkpoint_callback = self.configure_model_checkpoint(
**self.last_checkpoint_kwargs
)
self.callbacks_store.append(self.latest_model_checkpoint_callback)
self.callbacks_store.append(SaveRetrieverCallback())
if self.early_stopping:
self.early_stopping_callback = self.configure_early_stopping(
**self.early_stopping_kwargs
)
return self.callbacks_store
def configure_metrics_callbacks(
self, save_predictions: bool = False
) -> List[NLPTemplateCallback]:
"""
Configure the metrics callbacks for the trainer. This method is called
by the `eval_callbacks` method, and it is used to configure the callbacks
that will be used to evaluate the model during training.
Args:
save_predictions (`bool`, optional, defaults to `False`):
Whether to save the predictions to disk or not
Returns:
`List[NLPTemplateCallback]`:
The list of callbacks to use for evaluation
"""
# prediction callback
metrics_callbacks: List[NLPTemplateCallback] = [
RecallAtKEvaluationCallback(k, verbose=True) for k in self.top_k
]
metrics_callbacks += [
AvgRankingEvaluationCallback(k, verbose=True) for k in self.top_k
]
if save_predictions:
metrics_callbacks.append(SavePredictionsCallback())
return metrics_callbacks
def configure_prediction_callbacks(
self,
batch_size: int = 64,
precision: int | str = 32,
k: int | None = None,
force_reindex: bool = True,
metrics_callbacks: list[NLPTemplateCallback] | None = None,
*args,
**kwargs,
):
if k is None:
# we need the largest k for the prediction callback
# get the max top_k for the prediction callback
k = sorted(self.top_k, reverse=True)[0]
if metrics_callbacks is None:
metrics_callbacks = self.configure_metrics_callbacks()
prediction_callback = GoldenRetrieverPredictionCallback(
batch_size=batch_size,
precision=precision,
k=k,
force_reindex=force_reindex,
other_callbacks=metrics_callbacks,
*args,
**kwargs,
)
return prediction_callback
def train(self, *args, **kwargs):
"""
Train the model
Args:
*args:
Additional args
**kwargs:
Additional kwargs
Returns:
`None`
"""
if self.log_to_wandb:
logger.info("Instantiating Wandb Logger")
# log the args to wandb
# logger.info(pformat(self.wandb_kwargs))
self.wandb_logger = self.configure_logger(**self.wandb_kwargs)
self.experiment_path = Path(self.wandb_logger.experiment.dir)
# set-up training specific callbacks
self.callbacks_store = self.training_callbacks()
# add the evaluation callbacks
self.callbacks_store.append(
self.configure_prediction_callbacks(
batch_size=self.prediction_batch_size,
precision=self.precision,
)
)
# add the hard negatives callback after the evaluation callback
if self.max_hard_negatives_to_mine > 0:
self.callbacks_store.append(self.configure_hard_negatives_callback())
self.callbacks_store.append(FreeUpIndexerVRAMCallback())
if self.trainer is None:
logger.info("Instantiating the Trainer")
self.trainer = pl.Trainer(
accelerator=self.accelerator,
devices=self.devices,
num_nodes=self.num_nodes,
strategy=self.strategy,
accumulate_grad_batches=self.accumulate_grad_batches,
max_epochs=self.max_epochs,
max_steps=self.max_steps,
gradient_clip_val=self.gradient_clip_val,
val_check_interval=self.val_check_interval,
check_val_every_n_epoch=self.check_val_every_n_epoch,
deterministic=self.deterministic,
fast_dev_run=self.fast_dev_run,
precision=self.precision,
reload_dataloaders_every_n_epochs=self.reload_dataloaders_every_n_epochs,
callbacks=self.callbacks_store,
logger=self.wandb_logger,
**self.trainer_kwargs,
)
# # save this class as config to file
# if self.experiment_path is not None:
# logger.info("Saving the configuration to file")
# self.experiment_path.mkdir(parents=True, exist_ok=True)
# OmegaConf.save(
# OmegaConf.create(to_config(self)),
# self.experiment_path / "trainer_config.yaml",
# )
self.trainer.fit(
self.lightning_module,
datamodule=self.lightning_datamodule,
ckpt_path=self.resume_from_checkpoint_path,
)
def test(
self,
lightning_module: GoldenRetrieverPLModule | None = None,
checkpoint_path: str | os.PathLike | None = None,
lightning_datamodule: GoldenRetrieverPLDataModule | None = None,
force_reindex: bool = False,
*args,
**kwargs,
):
"""
Test the model
Args:
lightning_module (`GoldenRetrieverPLModule`, optional, defaults to `None`):
The lightning module to test
checkpoint_path (`str`, `os.PathLike`, optional, defaults to `None`):
The path to the checkpoint to load
lightning_datamodule (`GoldenRetrieverPLDataModule`, optional, defaults to `None`):
The lightning data module to use for testing
*args:
Additional args
**kwargs:
Additional kwargs
Returns:
`None`
"""
if self.test_dataset is None:
logger.warning("No test dataset provided. Skipping testing.")
return
if self.trainer is None:
self.trainer = pl.Trainer(
accelerator=self.accelerator,
devices=self.devices,
num_nodes=self.num_nodes,
strategy=self.strategy,
deterministic=self.deterministic,
fast_dev_run=self.fast_dev_run,
precision=self.precision,
callbacks=[
self.configure_prediction_callbacks(
batch_size=self.prediction_batch_size,
precision=self.precision,
force_reindex=force_reindex,
)
],
**self.trainer_kwargs,
)
if lightning_module is not None:
best_lightning_module = lightning_module
else:
try:
if self.fast_dev_run:
best_lightning_module = self.lightning_module
else:
# load best model for testing
if checkpoint_path is not None:
best_model_path = checkpoint_path
elif self.checkpoint_path is not None:
best_model_path = self.checkpoint_path
elif self.model_checkpoint_callback:
best_model_path = self.model_checkpoint_callback.best_model_path
else:
raise ValueError(
"Either `checkpoint_path` or `model_checkpoint_callback` should "
"be provided to the trainer"
)
logger.info(f"Loading best model from {best_model_path}")
best_lightning_module = (
GoldenRetrieverPLModule.load_from_checkpoint(best_model_path)
)
except Exception as e:
logger.info(f"Failed to load the model from checkpoint: {e}")
logger.info("Using last model instead")
best_lightning_module = self.lightning_module
lightning_datamodule = lightning_datamodule or self.lightning_datamodule
# module test
self.trainer.test(best_lightning_module, datamodule=lightning_datamodule)
def train(conf: omegaconf.DictConfig) -> None:
logger.info("Starting training with config:")
logger.info(pformat(OmegaConf.to_container(conf)))
logger.info("Instantiating the Retriever")
retriever: GoldenRetriever = hydra.utils.instantiate(
conf.retriever, _recursive_=False
)
logger.info("Instantiating datasets")
train_dataset: GoldenRetrieverDataset = hydra.utils.instantiate(
conf.data.train_dataset, _recursive_=False
)
val_dataset: GoldenRetrieverDataset = hydra.utils.instantiate(
conf.data.val_dataset, _recursive_=False
)
test_dataset: GoldenRetrieverDataset = hydra.utils.instantiate(
conf.data.test_dataset, _recursive_=False
)
logger.info("Loading the document index")
document_index: BaseDocumentIndex = hydra.utils.instantiate(
conf.data.document_index, _recursive_=False
)
retriever.document_index = document_index
logger.info("Instantiating the Trainer")
trainer: Trainer = hydra.utils.instantiate(
conf.train,
retriever=retriever,
train_dataset=train_dataset,
val_dataset=val_dataset,
test_dataset=test_dataset,
_recursive_=False,
)
logger.info("Starting training")
trainer.train()
logger.info("Starting testing")
trainer.test()
logger.info("Training and testing completed")
@hydra.main(config_path="../../conf", config_name="default", version_base="1.3")
def main(conf: omegaconf.DictConfig):
train(conf)
def train_hydra(conf: omegaconf.DictConfig) -> None:
# reproducibility
pl.seed_everything(conf.train.seed)
torch.set_float32_matmul_precision(conf.train.float32_matmul_precision)
logger.info(f"Starting training for [bold cyan]{conf.model_name}[/bold cyan] model")
if conf.train.pl_trainer.fast_dev_run:
logger.info(
f"Debug mode {conf.train.pl_trainer.fast_dev_run}. Forcing debugger configuration"
)
# Debuggers don't like GPUs nor multiprocessing
# conf.train.pl_trainer.accelerator = "cpu"
conf.train.pl_trainer.devices = 1
conf.train.pl_trainer.strategy = "auto"
conf.train.pl_trainer.precision = 32
if "num_workers" in conf.data.datamodule:
conf.data.datamodule.num_workers = {
k: 0 for k in conf.data.datamodule.num_workers
}
# Switch wandb to offline mode to prevent online logging
conf.logging.log = None
# remove model checkpoint callback
conf.train.model_checkpoint_callback = None
if "print_config" in conf and conf.print_config:
# pprint(OmegaConf.to_container(conf), console=logger, expand_all=True)
logger.info(pformat(OmegaConf.to_container(conf)))
# data module declaration
logger.info("Instantiating the Data Module")
pl_data_module: GoldenRetrieverPLDataModule = hydra.utils.instantiate(
conf.data.datamodule, _recursive_=False
)
# force setup to get labels initialized for the model
pl_data_module.prepare_data()
# main module declaration
pl_module: Optional[GoldenRetrieverPLModule] = None
if not conf.train.only_test:
pl_data_module.setup("fit")
# count the number of training steps
if (
"max_epochs" in conf.train.pl_trainer
and conf.train.pl_trainer.max_epochs > 0
):
num_training_steps = (
len(pl_data_module.train_dataloader())
* conf.train.pl_trainer.max_epochs
)
if "max_steps" in conf.train.pl_trainer:
logger.info(
"Both `max_epochs` and `max_steps` are specified in the trainer configuration. "
"Will use `max_epochs` for the number of training steps"
)
conf.train.pl_trainer.max_steps = None
elif (
"max_steps" in conf.train.pl_trainer and conf.train.pl_trainer.max_steps > 0
):
num_training_steps = conf.train.pl_trainer.max_steps
conf.train.pl_trainer.max_epochs = None
else:
raise ValueError(
"Either `max_epochs` or `max_steps` should be specified in the trainer configuration"
)
logger.info(f"Expected number of training steps: {num_training_steps}")
if "lr_scheduler" in conf.model.pl_module and conf.model.pl_module.lr_scheduler:
# set the number of warmup steps as x% of the total number of training steps
if conf.model.pl_module.lr_scheduler.num_warmup_steps is None:
if (
"warmup_steps_ratio" in conf.model.pl_module
and conf.model.pl_module.warmup_steps_ratio is not None
):
conf.model.pl_module.lr_scheduler.num_warmup_steps = int(
conf.model.pl_module.lr_scheduler.num_training_steps
* conf.model.pl_module.warmup_steps_ratio
)
else:
conf.model.pl_module.lr_scheduler.num_warmup_steps = 0
logger.info(
f"Number of warmup steps: {conf.model.pl_module.lr_scheduler.num_warmup_steps}"
)
logger.info("Instantiating the Model")
pl_module: GoldenRetrieverPLModule = hydra.utils.instantiate(
conf.model.pl_module, _recursive_=False
)
if (
"pretrain_ckpt_path" in conf.train
and conf.train.pretrain_ckpt_path is not None
):
logger.info(
f"Loading pretrained checkpoint from {conf.train.pretrain_ckpt_path}"
)
pl_module.load_state_dict(
torch.load(conf.train.pretrain_ckpt_path)["state_dict"], strict=False
)
if "compile" in conf.model.pl_module and conf.model.pl_module.compile:
try:
pl_module = torch.compile(pl_module, backend="inductor")
except Exception:
logger.info(
"Failed to compile the model, you may need to install PyTorch 2.0"
)
# callbacks declaration
callbacks_store = [ModelSummary(max_depth=2)]
experiment_logger: Optional[WandbLogger] = None
experiment_path: Optional[Path] = None
if conf.logging.log:
logger.info("Instantiating Wandb Logger")
experiment_logger = hydra.utils.instantiate(conf.logging.wandb_arg)
if pl_module is not None:
# it may happen that the model is not instantiated if we are only testing
# in that case, we don't need to watch the model
experiment_logger.watch(pl_module, **conf.logging.watch)
experiment_path = Path(experiment_logger.experiment.dir)
# Store the YaML config separately into the wandb dir
yaml_conf: str = OmegaConf.to_yaml(cfg=conf)
(experiment_path / "hparams.yaml").write_text(yaml_conf)
# Add a Learning Rate Monitor callback to log the learning rate
callbacks_store.append(LearningRateMonitor(logging_interval="step"))
early_stopping_callback: Optional[EarlyStopping] = None
if conf.train.early_stopping_callback is not None:
early_stopping_callback = hydra.utils.instantiate(
conf.train.early_stopping_callback
)
callbacks_store.append(early_stopping_callback)
model_checkpoint_callback: Optional[ModelCheckpoint] = None
if conf.train.model_checkpoint_callback is not None:
model_checkpoint_callback = hydra.utils.instantiate(
conf.train.model_checkpoint_callback,
dirpath=experiment_path / "checkpoints" if experiment_path else None,
)
callbacks_store.append(model_checkpoint_callback)
if "callbacks" in conf.train and conf.train.callbacks is not None:
for _, callback in conf.train.callbacks.items():
# callback can be a list of callbacks or a single callback
if isinstance(callback, omegaconf.listconfig.ListConfig):
for cb in callback:
if cb is not None:
callbacks_store.append(
hydra.utils.instantiate(cb, _recursive_=False)
)
else:
if callback is not None:
callbacks_store.append(hydra.utils.instantiate(callback))
# trainer
logger.info("Instantiating the Trainer")
trainer: Trainer = hydra.utils.instantiate(
conf.train.pl_trainer, callbacks=callbacks_store, logger=experiment_logger
)
if not conf.train.only_test:
# module fit
trainer.fit(pl_module, datamodule=pl_data_module)
if conf.train.pl_trainer.fast_dev_run:
best_pl_module = pl_module
else:
# load best model for testing
if conf.train.checkpoint_path:
best_model_path = conf.evaluation.checkpoint_path
elif model_checkpoint_callback:
best_model_path = model_checkpoint_callback.best_model_path
else:
raise ValueError(
"Either `checkpoint_path` or `model_checkpoint_callback` should "
"be specified in the evaluation configuration"
)
logger.info(f"Loading best model from {best_model_path}")
try:
best_pl_module = GoldenRetrieverPLModule.load_from_checkpoint(
best_model_path
)
except Exception as e:
logger.info(f"Failed to load the model from checkpoint: {e}")
logger.info("Using last model instead")
best_pl_module = pl_module
if "compile" in conf.model.pl_module and conf.model.pl_module.compile:
try:
best_pl_module = torch.compile(best_pl_module, backend="inductor")
except Exception:
logger.info(
"Failed to compile the model, you may need to install PyTorch 2.0"
)
# module test
trainer.test(best_pl_module, datamodule=pl_data_module)
if __name__ == "__main__":
main()
|