|
import logging |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Generator, |
|
Iterator, |
|
List, |
|
NamedTuple, |
|
Optional, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
import numpy as np |
|
import torch |
|
from reader.data.relik_reader_data_utils import ( |
|
add_noise_to_value, |
|
batchify, |
|
batchify_matrices, |
|
batchify_tensor, |
|
chunks, |
|
flatten, |
|
) |
|
from reader.data.relik_reader_sample import RelikReaderSample, load_relik_reader_samples |
|
from torch.utils.data import IterableDataset |
|
from transformers import AutoTokenizer |
|
|
|
from relik.reader.utils.special_symbols import NME_SYMBOL |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class TokenizationOutput(NamedTuple): |
|
input_ids: torch.Tensor |
|
attention_mask: torch.Tensor |
|
token_type_ids: torch.Tensor |
|
prediction_mask: torch.Tensor |
|
special_symbols_mask: torch.Tensor |
|
special_symbols_mask_entities: torch.Tensor |
|
|
|
|
|
class RelikREDataset(IterableDataset): |
|
def __init__( |
|
self, |
|
dataset_path: str, |
|
materialize_samples: bool, |
|
transformer_model: str, |
|
special_symbols: List[str], |
|
shuffle_candidates: Optional[Union[bool, float]], |
|
flip_candidates: Optional[Union[bool, float]], |
|
relations_definitions: Union[str, Dict[str, str]], |
|
for_inference: bool, |
|
entities_definitions: Optional[Union[str, Dict[str, str]]] = None, |
|
special_symbols_entities: Optional[List[str]] = None, |
|
noise_param: float = 0.1, |
|
sorting_fields: Optional[str] = None, |
|
tokens_per_batch: int = 2048, |
|
batch_size: int = None, |
|
max_batch_size: int = 128, |
|
section_size: int = 50_000, |
|
prebatch: bool = True, |
|
max_candidates: int = 0, |
|
add_gold_candidates: bool = True, |
|
use_nme: bool = True, |
|
min_length: int = 5, |
|
max_length: int = 2048, |
|
model_max_length: int = 1000, |
|
skip_empty_training_samples: bool = True, |
|
drop_last: bool = False, |
|
samples: Optional[Iterator[RelikReaderSample]] = None, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.dataset_path = dataset_path |
|
self.materialize_samples = materialize_samples |
|
self.samples: Optional[List[RelikReaderSample]] = None |
|
if self.materialize_samples: |
|
self.samples = list() |
|
|
|
self.tokenizer = self._build_tokenizer(transformer_model, special_symbols) |
|
self.special_symbols = special_symbols |
|
self.special_symbols_entities = special_symbols_entities |
|
self.shuffle_candidates = shuffle_candidates |
|
self.flip_candidates = flip_candidates |
|
self.for_inference = for_inference |
|
self.noise_param = noise_param |
|
self.batching_fields = ["input_ids"] |
|
self.sorting_fields = ( |
|
sorting_fields if sorting_fields is not None else self.batching_fields |
|
) |
|
|
|
|
|
if type(relations_definitions) == str: |
|
relations_definitions = { |
|
line.split("\t")[0]: line.split("\t")[1] |
|
for line in open(relations_definitions) |
|
} |
|
self.max_candidates = max_candidates |
|
self.relations_definitions = relations_definitions |
|
self.entities_definitions = entities_definitions |
|
|
|
self.add_gold_candidates = add_gold_candidates |
|
self.use_nme = use_nme |
|
self.min_length = min_length |
|
self.max_length = max_length |
|
self.model_max_length = ( |
|
model_max_length |
|
if model_max_length < self.tokenizer.model_max_length |
|
else self.tokenizer.model_max_length |
|
) |
|
self.transformer_model = transformer_model |
|
self.skip_empty_training_samples = skip_empty_training_samples |
|
self.drop_last = drop_last |
|
self.samples = samples |
|
|
|
self.tokens_per_batch = tokens_per_batch |
|
self.batch_size = batch_size |
|
self.max_batch_size = max_batch_size |
|
self.section_size = section_size |
|
self.prebatch = prebatch |
|
|
|
def _build_tokenizer(self, transformer_model: str, special_symbols: List[str]): |
|
return AutoTokenizer.from_pretrained( |
|
transformer_model, |
|
additional_special_tokens=[ss for ss in special_symbols], |
|
add_prefix_space=True, |
|
) |
|
|
|
@property |
|
def fields_batcher(self) -> Dict[str, Union[None, Callable[[list], Any]]]: |
|
fields_batchers = { |
|
"input_ids": lambda x: batchify( |
|
x, padding_value=self.tokenizer.pad_token_id |
|
), |
|
"attention_mask": lambda x: batchify(x, padding_value=0), |
|
"token_type_ids": lambda x: batchify(x, padding_value=0), |
|
"prediction_mask": lambda x: batchify(x, padding_value=1), |
|
"global_attention": lambda x: batchify(x, padding_value=0), |
|
"token2word": None, |
|
"sample": None, |
|
"special_symbols_mask": lambda x: batchify(x, padding_value=False), |
|
"special_symbols_mask_entities": lambda x: batchify(x, padding_value=False), |
|
"start_labels": lambda x: batchify(x, padding_value=-100), |
|
"end_labels": lambda x: batchify_matrices(x, padding_value=-100), |
|
"disambiguation_labels": lambda x: batchify(x, padding_value=-100), |
|
"relation_labels": lambda x: batchify_tensor(x, padding_value=-100), |
|
"predictable_candidates": None, |
|
} |
|
if "roberta" in self.transformer_model: |
|
del fields_batchers["token_type_ids"] |
|
|
|
return fields_batchers |
|
|
|
def _build_input_ids( |
|
self, sentence_input_ids: List[int], candidates_input_ids: List[List[int]] |
|
) -> List[int]: |
|
return ( |
|
[self.tokenizer.cls_token_id] |
|
+ sentence_input_ids |
|
+ [self.tokenizer.sep_token_id] |
|
+ flatten(candidates_input_ids) |
|
+ [self.tokenizer.sep_token_id] |
|
) |
|
|
|
def _get_special_symbols_mask(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
special_symbols_mask = input_ids >= ( |
|
len(self.tokenizer) |
|
- len(self.special_symbols + self.special_symbols_entities) |
|
) |
|
special_symbols_mask[0] = True |
|
return special_symbols_mask |
|
|
|
def _build_tokenizer_essentials( |
|
self, input_ids, original_sequence |
|
) -> TokenizationOutput: |
|
input_ids = torch.tensor(input_ids, dtype=torch.long) |
|
attention_mask = torch.ones_like(input_ids) |
|
|
|
total_sequence_len = len(input_ids) |
|
predictable_sentence_len = len(original_sequence) |
|
|
|
|
|
token_type_ids = torch.cat( |
|
[ |
|
input_ids.new_zeros( |
|
predictable_sentence_len + 2 |
|
), |
|
input_ids.new_ones(total_sequence_len - predictable_sentence_len - 2), |
|
] |
|
) |
|
|
|
|
|
|
|
prediction_mask = torch.tensor( |
|
[1] |
|
+ ([0] * predictable_sentence_len) |
|
+ ([1] * (total_sequence_len - predictable_sentence_len - 1)) |
|
) |
|
|
|
assert len(prediction_mask) == len(input_ids) |
|
|
|
|
|
special_symbols_mask = input_ids >= ( |
|
len(self.tokenizer) |
|
- len(self.special_symbols) |
|
) |
|
if self.entities_definitions is not None: |
|
|
|
special_symbols_mask_entities = special_symbols_mask.clone() |
|
special_symbols_mask_entities[ |
|
special_symbols_mask_entities.cumsum(0) > len(self.entities_definitions) |
|
] = False |
|
special_symbols_mask = special_symbols_mask ^ special_symbols_mask_entities |
|
else: |
|
special_symbols_mask_entities = special_symbols_mask.clone() |
|
|
|
return TokenizationOutput( |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
prediction_mask, |
|
special_symbols_mask, |
|
special_symbols_mask_entities, |
|
) |
|
|
|
def _build_labels( |
|
self, |
|
sample, |
|
tokenization_output: TokenizationOutput, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
start_labels = [0] * len(tokenization_output.input_ids) |
|
end_labels = [] |
|
|
|
sample.entities.sort(key=lambda x: (x[0], x[1])) |
|
|
|
prev_start_bpe = -1 |
|
num_repeat_start = 0 |
|
if self.entities_definitions: |
|
sample.entities = [(ce[0], ce[1], ce[2]) for ce in sample.entities] |
|
sample.entity_candidates = list(self.entities_definitions.keys()) |
|
disambiguation_labels = torch.zeros( |
|
len(sample.entities), |
|
len(sample.entity_candidates) + len(sample.candidates), |
|
) |
|
else: |
|
sample.entities = [(ce[0], ce[1], "") for ce in sample.entities] |
|
disambiguation_labels = torch.zeros( |
|
len(sample.entities), len(sample.candidates) |
|
) |
|
ignored_labels_indices = tokenization_output.prediction_mask == 1 |
|
for idx, c_ent in enumerate(sample.entities): |
|
start_bpe = sample.word2token[c_ent[0]][0] + 1 |
|
end_bpe = sample.word2token[c_ent[1] - 1][-1] + 1 |
|
class_index = idx |
|
start_labels[start_bpe] = class_index + 1 |
|
if start_bpe != prev_start_bpe: |
|
end_labels.append([0] * len(tokenization_output.input_ids)) |
|
|
|
end_labels[-1][end_bpe] = class_index + 1 |
|
else: |
|
end_labels[-1][end_bpe] = class_index + 1 |
|
num_repeat_start += 1 |
|
if self.entities_definitions: |
|
entity_type_idx = sample.entity_candidates.index(c_ent[2]) |
|
disambiguation_labels[idx, entity_type_idx] = 1 |
|
prev_start_bpe = start_bpe |
|
|
|
start_labels = torch.tensor(start_labels, dtype=torch.long) |
|
start_labels[ignored_labels_indices] = -100 |
|
|
|
end_labels = torch.tensor(end_labels, dtype=torch.long) |
|
end_labels[ignored_labels_indices.repeat(len(end_labels), 1)] = -100 |
|
|
|
relation_labels = torch.zeros( |
|
len(sample.entities), len(sample.entities), len(sample.candidates) |
|
) |
|
|
|
|
|
for re in sample.triplets: |
|
if re["relation"]["name"] not in sample.candidates: |
|
re_class_index = len(sample.candidates) - 1 |
|
else: |
|
re_class_index = sample.candidates.index( |
|
re["relation"]["name"] |
|
) |
|
if self.entities_definitions: |
|
subject_class_index = sample.entities.index( |
|
( |
|
re["subject"]["start"], |
|
re["subject"]["end"], |
|
re["subject"]["type"], |
|
) |
|
) |
|
object_class_index = sample.entities.index( |
|
(re["object"]["start"], re["object"]["end"], re["object"]["type"]) |
|
) |
|
else: |
|
subject_class_index = sample.entities.index( |
|
(re["subject"]["start"], re["subject"]["end"], "") |
|
) |
|
object_class_index = sample.entities.index( |
|
(re["object"]["start"], re["object"]["end"], "") |
|
) |
|
|
|
relation_labels[subject_class_index, object_class_index, re_class_index] = 1 |
|
|
|
if self.entities_definitions: |
|
disambiguation_labels[ |
|
subject_class_index, re_class_index + len(sample.entity_candidates) |
|
] = 1 |
|
disambiguation_labels[ |
|
object_class_index, re_class_index + len(sample.entity_candidates) |
|
] = 1 |
|
|
|
else: |
|
disambiguation_labels[subject_class_index, re_class_index] = 1 |
|
disambiguation_labels[object_class_index, re_class_index] = 1 |
|
|
|
return start_labels, end_labels, disambiguation_labels, relation_labels |
|
|
|
def __iter__(self): |
|
dataset_iterator = self.dataset_iterator_func() |
|
current_dataset_elements = [] |
|
i = None |
|
for i, dataset_elem in enumerate(dataset_iterator, start=1): |
|
if ( |
|
self.section_size is not None |
|
and len(current_dataset_elements) == self.section_size |
|
): |
|
for batch in self.materialize_batches(current_dataset_elements): |
|
yield batch |
|
current_dataset_elements = [] |
|
current_dataset_elements.append(dataset_elem) |
|
if i % 50_000 == 0: |
|
logger.info(f"Processed: {i} number of elements") |
|
if len(current_dataset_elements) != 0: |
|
for batch in self.materialize_batches(current_dataset_elements): |
|
yield batch |
|
if i is not None: |
|
logger.info(f"Dataset finished: {i} number of elements processed") |
|
else: |
|
logger.warning("Dataset empty") |
|
|
|
def dataset_iterator_func(self): |
|
data_samples = ( |
|
load_relik_reader_samples(self.dataset_path) |
|
if self.samples is None |
|
else self.samples |
|
) |
|
for sample in data_samples: |
|
|
|
input_tokenized = self.tokenizer( |
|
sample.tokens, |
|
return_offsets_mapping=True, |
|
add_special_tokens=False, |
|
is_split_into_words=True, |
|
) |
|
input_subwords = input_tokenized["input_ids"] |
|
offsets = input_tokenized["offset_mapping"] |
|
token2word = [] |
|
word2token = {} |
|
count = 0 |
|
for i, offset in enumerate(offsets): |
|
if offset[0] == 0: |
|
token2word.append(i - count) |
|
word2token[i - count] = [i] |
|
else: |
|
token2word.append(token2word[-1]) |
|
word2token[token2word[-1]].append(i) |
|
count += 1 |
|
sample.token2word = token2word |
|
sample.word2token = word2token |
|
|
|
candidates_symbols = self.special_symbols |
|
|
|
if self.max_candidates > 0: |
|
|
|
sample.candidates = sample.candidates[: self.max_candidates] |
|
|
|
|
|
if self.use_nme: |
|
sample.candidates.insert(0, NME_SYMBOL) |
|
|
|
|
|
if not self.for_inference: |
|
|
|
if ( |
|
sample.triplets is None or len(sample.triplets) == 0 |
|
) and self.skip_empty_training_samples: |
|
logger.warning( |
|
"Sample {} has no labels, skipping".format(sample.sample_id) |
|
) |
|
continue |
|
|
|
|
|
if self.add_gold_candidates: |
|
candidates_set = set(sample.candidates) |
|
candidates_to_add = [] |
|
for candidate_title in sample.triplets: |
|
if candidate_title["relation"]["name"] not in candidates_set: |
|
candidates_to_add.append( |
|
candidate_title["relation"]["name"] |
|
) |
|
if len(candidates_to_add) > 0: |
|
|
|
|
|
added_gold_candidates = 0 |
|
gold_candidates_titles_set = set( |
|
set(ct["relation"]["name"] for ct in sample.triplets) |
|
) |
|
for i in reversed(range(len(sample.candidates))): |
|
if ( |
|
sample.candidates[i] not in gold_candidates_titles_set |
|
and sample.candidates[i] != NME_SYMBOL |
|
): |
|
sample.candidates[i] = candidates_to_add[ |
|
added_gold_candidates |
|
] |
|
added_gold_candidates += 1 |
|
if len(candidates_to_add) == added_gold_candidates: |
|
break |
|
|
|
candidates_still_to_add = ( |
|
len(candidates_to_add) - added_gold_candidates |
|
) |
|
while ( |
|
len(sample.candidates) <= len(candidates_symbols) |
|
and candidates_still_to_add != 0 |
|
): |
|
sample.candidates.append( |
|
candidates_to_add[added_gold_candidates] |
|
) |
|
added_gold_candidates += 1 |
|
candidates_still_to_add -= 1 |
|
|
|
|
|
if ( |
|
isinstance(self.shuffle_candidates, bool) |
|
and self.shuffle_candidates |
|
) or ( |
|
isinstance(self.shuffle_candidates, float) |
|
and np.random.uniform() < self.shuffle_candidates |
|
): |
|
np.random.shuffle(sample.candidates) |
|
if NME_SYMBOL in sample.candidates: |
|
sample.candidates.remove(NME_SYMBOL) |
|
sample.candidates.insert(0, NME_SYMBOL) |
|
|
|
|
|
if ( |
|
isinstance(self.flip_candidates, bool) and self.flip_candidates |
|
) or ( |
|
isinstance(self.flip_candidates, float) |
|
and np.random.uniform() < self.flip_candidates |
|
): |
|
for i in range(len(sample.candidates) - 1): |
|
if np.random.uniform() < 0.5: |
|
sample.candidates[i], sample.candidates[i + 1] = ( |
|
sample.candidates[i + 1], |
|
sample.candidates[i], |
|
) |
|
if NME_SYMBOL in sample.candidates: |
|
sample.candidates.remove(NME_SYMBOL) |
|
sample.candidates.insert(0, NME_SYMBOL) |
|
|
|
|
|
candidates_symbols = candidates_symbols[: len(sample.candidates)] |
|
relations_defs = [ |
|
"{} {}".format(cs, self.relations_definitions[ct]) |
|
if ct != NME_SYMBOL |
|
else NME_SYMBOL |
|
for cs, ct in zip(candidates_symbols, sample.candidates) |
|
] |
|
if self.entities_definitions is not None: |
|
candidates_entities_symbols = list(self.special_symbols_entities) |
|
candidates_entities_symbols = candidates_entities_symbols[ |
|
: len(self.entities_definitions) |
|
] |
|
entity_defs = [ |
|
"{} {}".format(cs, self.entities_definitions[ct]) |
|
for cs, ct in zip( |
|
candidates_entities_symbols, self.entities_definitions.keys() |
|
) |
|
] |
|
relations_defs = ( |
|
entity_defs + [self.tokenizer.sep_token] + relations_defs |
|
) |
|
|
|
candidates_encoding_result = self.tokenizer.batch_encode_plus( |
|
relations_defs, |
|
add_special_tokens=False, |
|
).input_ids |
|
|
|
|
|
if ( |
|
sum(map(len, candidates_encoding_result)) |
|
+ len(input_subwords) |
|
+ 20 |
|
> self.model_max_length |
|
): |
|
if self.for_inference: |
|
acceptable_tokens_from_candidates = ( |
|
self.model_max_length - 20 - len(input_subwords) |
|
) |
|
while ( |
|
cum_len + len(candidates_encoding_result[i]) |
|
< acceptable_tokens_from_candidates |
|
): |
|
cum_len += len(candidates_encoding_result[i]) |
|
i += 1 |
|
|
|
candidates_encoding_result = candidates_encoding_result[:i] |
|
if self.entities_definitions is not None: |
|
candidates_symbols = candidates_symbols[ |
|
: i - len(self.entities_definitions) |
|
] |
|
sample.candidates = sample.candidates[ |
|
: i - len(self.entities_definitions) |
|
] |
|
else: |
|
candidates_symbols = candidates_symbols[:i] |
|
sample.candidates = sample.candidates[:i] |
|
|
|
else: |
|
gold_candidates_set = set( |
|
[wl["relation"]["name"] for wl in sample.triplets] |
|
) |
|
gold_candidates_indices = [ |
|
i |
|
for i, wc in enumerate(sample.candidates) |
|
if wc in gold_candidates_set |
|
] |
|
if self.entities_definitions is not None: |
|
gold_candidates_indices = [ |
|
i + len(self.entities_definitions) |
|
for i in gold_candidates_indices |
|
] |
|
|
|
gold_candidates_indices = gold_candidates_indices + list( |
|
range(len(self.entities_definitions)) |
|
) |
|
necessary_taken_tokens = sum( |
|
map( |
|
len, |
|
[ |
|
candidates_encoding_result[i] |
|
for i in gold_candidates_indices |
|
], |
|
) |
|
) |
|
|
|
acceptable_tokens_from_candidates = ( |
|
self.model_max_length |
|
- 20 |
|
- len(input_subwords) |
|
- necessary_taken_tokens |
|
) |
|
|
|
assert acceptable_tokens_from_candidates > 0 |
|
|
|
i = 0 |
|
cum_len = 0 |
|
while ( |
|
cum_len + len(candidates_encoding_result[i]) |
|
< acceptable_tokens_from_candidates |
|
): |
|
if i not in gold_candidates_indices: |
|
cum_len += len(candidates_encoding_result[i]) |
|
i += 1 |
|
|
|
new_indices = sorted( |
|
list(set(list(range(i)) + gold_candidates_indices)) |
|
) |
|
np.random.shuffle(new_indices) |
|
|
|
candidates_encoding_result = [ |
|
candidates_encoding_result[i] for i in new_indices |
|
] |
|
if self.entities_definitions is not None: |
|
sample.candidates = [ |
|
sample.candidates[i - len(self.entities_definitions)] |
|
for i in new_indices |
|
] |
|
candidates_symbols = candidates_symbols[ |
|
: i - len(self.entities_definitions) |
|
] |
|
else: |
|
candidates_symbols = [ |
|
candidates_symbols[i] for i in new_indices |
|
] |
|
sample.window_candidates = [ |
|
sample.window_candidates[i] for i in new_indices |
|
] |
|
if len(sample.candidates) == 0: |
|
logger.warning( |
|
"Sample {} has no candidates after truncation due to max length".format( |
|
sample.sample_id |
|
) |
|
) |
|
continue |
|
|
|
|
|
input_ids = self._build_input_ids( |
|
sentence_input_ids=input_subwords, |
|
candidates_input_ids=candidates_encoding_result, |
|
) |
|
|
|
|
|
tokenization_output = self._build_tokenizer_essentials( |
|
input_ids, input_subwords |
|
) |
|
|
|
|
|
start_labels, end_labels, disambiguation_labels, relation_labels = ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
if sample.entities is not None and len(sample.entities) > 0: |
|
( |
|
start_labels, |
|
end_labels, |
|
disambiguation_labels, |
|
relation_labels, |
|
) = self._build_labels( |
|
sample, |
|
tokenization_output, |
|
) |
|
|
|
yield { |
|
"input_ids": tokenization_output.input_ids, |
|
"attention_mask": tokenization_output.attention_mask, |
|
"token_type_ids": tokenization_output.token_type_ids, |
|
"prediction_mask": tokenization_output.prediction_mask, |
|
"special_symbols_mask": tokenization_output.special_symbols_mask, |
|
"special_symbols_mask_entities": tokenization_output.special_symbols_mask_entities, |
|
"sample": sample, |
|
"start_labels": start_labels, |
|
"end_labels": end_labels, |
|
"disambiguation_labels": disambiguation_labels, |
|
"relation_labels": relation_labels, |
|
"predictable_candidates": candidates_symbols, |
|
} |
|
|
|
def preshuffle_elements(self, dataset_elements: List): |
|
|
|
|
|
|
|
|
|
if not self.for_inference: |
|
dataset_elements = np.random.permutation(dataset_elements) |
|
|
|
sorting_fn = ( |
|
lambda elem: add_noise_to_value( |
|
sum(len(elem[k]) for k in self.sorting_fields), |
|
noise_param=self.noise_param, |
|
) |
|
if not self.for_inference |
|
else sum(len(elem[k]) for k in self.sorting_fields) |
|
) |
|
|
|
dataset_elements = sorted(dataset_elements, key=sorting_fn) |
|
|
|
if self.for_inference: |
|
return dataset_elements |
|
|
|
ds = list(chunks(dataset_elements, 64)) |
|
np.random.shuffle(ds) |
|
return flatten(ds) |
|
|
|
def materialize_batches( |
|
self, dataset_elements: List[Dict[str, Any]] |
|
) -> Generator[Dict[str, Any], None, None]: |
|
if self.prebatch: |
|
dataset_elements = self.preshuffle_elements(dataset_elements) |
|
|
|
current_batch = [] |
|
|
|
|
|
def output_batch() -> Dict[str, Any]: |
|
assert ( |
|
len( |
|
set([len(elem["predictable_candidates"]) for elem in current_batch]) |
|
) |
|
== 1 |
|
), " ".join( |
|
map( |
|
str, [len(elem["predictable_candidates"]) for elem in current_batch] |
|
) |
|
) |
|
|
|
batch_dict = dict() |
|
|
|
de_values_by_field = { |
|
fn: [de[fn] for de in current_batch if fn in de] |
|
for fn in self.fields_batcher |
|
} |
|
|
|
|
|
|
|
de_values_by_field = { |
|
fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0 |
|
} |
|
|
|
assert len(set([len(v) for v in de_values_by_field.values()])) |
|
|
|
|
|
|
|
de_values_by_field = { |
|
fn: fvs |
|
for fn, fvs in de_values_by_field.items() |
|
if all([fv is not None for fv in fvs]) |
|
} |
|
|
|
for field_name, field_values in de_values_by_field.items(): |
|
field_batch = ( |
|
self.fields_batcher[field_name](field_values) |
|
if self.fields_batcher[field_name] is not None |
|
else field_values |
|
) |
|
|
|
batch_dict[field_name] = field_batch |
|
|
|
return batch_dict |
|
|
|
max_len_discards, min_len_discards = 0, 0 |
|
|
|
should_token_batch = self.batch_size is None |
|
|
|
curr_pred_elements = -1 |
|
for de in dataset_elements: |
|
if ( |
|
should_token_batch |
|
and self.max_batch_size != -1 |
|
and len(current_batch) == self.max_batch_size |
|
) or (not should_token_batch and len(current_batch) == self.batch_size): |
|
yield output_batch() |
|
current_batch = [] |
|
curr_pred_elements = -1 |
|
|
|
|
|
|
|
too_long_fields = [ |
|
k |
|
for k in de |
|
if self.max_length != -1 |
|
and torch.is_tensor(de[k]) |
|
and len(de[k]) > self.max_length |
|
] |
|
if len(too_long_fields) > 0: |
|
max_len_discards += 1 |
|
continue |
|
|
|
too_short_fields = [ |
|
k |
|
for k in de |
|
if self.min_length != -1 |
|
and torch.is_tensor(de[k]) |
|
and len(de[k]) < self.min_length |
|
] |
|
if len(too_short_fields) > 0: |
|
min_len_discards += 1 |
|
continue |
|
|
|
if should_token_batch: |
|
de_len = sum(len(de[k]) for k in self.batching_fields) |
|
|
|
future_max_len = max( |
|
de_len, |
|
max( |
|
[ |
|
sum(len(bde[k]) for k in self.batching_fields) |
|
for bde in current_batch |
|
], |
|
default=0, |
|
), |
|
) |
|
|
|
future_tokens_per_batch = future_max_len * (len(current_batch) + 1) |
|
|
|
num_predictable_candidates = len(de["predictable_candidates"]) |
|
|
|
if len(current_batch) > 0 and ( |
|
future_tokens_per_batch >= self.tokens_per_batch |
|
or ( |
|
num_predictable_candidates != curr_pred_elements |
|
and curr_pred_elements != -1 |
|
) |
|
): |
|
yield output_batch() |
|
current_batch = [] |
|
|
|
current_batch.append(de) |
|
curr_pred_elements = len(de["predictable_candidates"]) |
|
|
|
if len(current_batch) != 0 and not self.drop_last: |
|
yield output_batch() |
|
|
|
if max_len_discards > 0: |
|
if self.for_inference: |
|
logger.warning( |
|
f"WARNING: Inference mode is True but {max_len_discards} samples longer than max length were " |
|
f"found. The {max_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation" |
|
f", this can INVALIDATE results. This might happen if the max length was not set to -1 or if the " |
|
f"sample length exceeds the maximum length supported by the current model." |
|
) |
|
else: |
|
logger.warning( |
|
f"During iteration, {max_len_discards} elements were " |
|
f"discarded since longer than max length {self.max_length}" |
|
) |
|
|
|
if min_len_discards > 0: |
|
if self.for_inference: |
|
logger.warning( |
|
f"WARNING: Inference mode is True but {min_len_discards} samples shorter than min length were " |
|
f"found. The {min_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation" |
|
f", this can INVALIDATE results. This might happen if the min length was not set to -1 or if the " |
|
f"sample length is shorter than the minimum length supported by the current model." |
|
) |
|
else: |
|
logger.warning( |
|
f"During iteration, {min_len_discards} elements were " |
|
f"discarded since shorter than min length {self.min_length}" |
|
) |
|
|
|
|
|
def main(): |
|
special_symbols = [NME_SYMBOL] + [f"R-{i}" for i in range(50)] |
|
|
|
relik_dataset = RelikREDataset( |
|
"/home/huguetcabot/alby-re/alby/data/nyt-alby+/valid.jsonl", |
|
materialize_samples=False, |
|
transformer_model="microsoft/deberta-v3-base", |
|
special_symbols=special_symbols, |
|
shuffle_candidates=False, |
|
flip_candidates=False, |
|
for_inference=True, |
|
) |
|
|
|
for batch in relik_dataset: |
|
print(batch) |
|
exit(0) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|