riccorl's picture
first commit
626eca0
raw
history blame
5.23 kB
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the
documentation.
2. Run Tests for Amazon Sagemaker. The documentation is located in `./tests/sagemaker/README.md`, otherwise @philschmid.
3. Unpin specific versions from setup.py that use a git install.
4. Commit these changes with the message: "Release: VERSION"
5. Add a tag in git to mark the release: "git tag VERSION -m 'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
6. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
7. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi transformers
8. Upload the final version to actual pypi:
twine upload dist/* -r pypi
9. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
10. Run `make post-release` (or `make post-patch` for a patch release).
"""
from collections import defaultdict
import setuptools
def parse_requirements_file(
path, allowed_extras: set = None, include_all_extra: bool = True
):
requirements = []
extras = defaultdict(list)
find_links = []
with open(path) as requirements_file:
import re
def fix_url_dependencies(req: str) -> str:
"""Pip and setuptools disagree about how URL dependencies should be handled."""
m = re.match(
r"^(git\+)?(https|ssh)://(git@)?github\.com/([\w-]+)/(?P<name>[\w-]+)\.git",
req,
)
if m is None:
return req
else:
return f"{m.group('name')} @ {req}"
for line in requirements_file:
line = line.strip()
if line.startswith("#") or len(line) <= 0:
continue
if (
line.startswith("-f")
or line.startswith("--find-links")
or line.startswith("--index-url")
):
find_links.append(line.split(" ", maxsplit=1)[-1].strip())
continue
req, *needed_by = line.split("# needed by:")
req = fix_url_dependencies(req.strip())
if needed_by:
for extra in needed_by[0].strip().split(","):
extra = extra.strip()
if allowed_extras is not None and extra not in allowed_extras:
raise ValueError(f"invalid extra '{extra}' in {path}")
extras[extra].append(req)
if include_all_extra and req not in extras["all"]:
extras["all"].append(req)
else:
requirements.append(req)
return requirements, extras, find_links
allowed_extras = {
"onnx",
"onnx-gpu",
"serve",
"retriever",
"reader",
"all",
"faiss",
"dev",
}
# Load requirements.
install_requirements, extras, find_links = parse_requirements_file(
"requirements.txt", allowed_extras=allowed_extras
)
# version.py defines the VERSION and VERSION_SHORT variables.
# We use exec here, so we don't import allennlp whilst setting up.
VERSION = {} # type: ignore
with open("relik/version.py", "r") as version_file:
exec(version_file.read(), VERSION)
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="relik",
version=VERSION["VERSION"],
author="Edoardo Barba, Riccardo Orlando, Pere-Lluís Huguet Cabot",
author_email="orlandorcc@gmail.com",
description="Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/SapienzaNLP/relik",
keywords="NLP Sapienza sapienzanlp deep learning transformer pytorch retriever entity linking relation extraction reader budget",
packages=setuptools.find_packages(),
include_package_data=True,
license="Apache",
classifiers=[
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
install_requires=install_requirements,
extras_require=extras,
python_requires=">=3.10",
)