import math import torch from torch.optim import Optimizer class RAdamW(Optimizer): r"""Implements RAdamW algorithm. RAdam from `On the Variance of the Adaptive Learning Rate and Beyond `_ * `Adam: A Method for Stochastic Optimization `_ * `Decoupled Weight Decay Regularization `_ * `On the Convergence of Adam and Beyond `_ * `On the Variance of the Adaptive Learning Rate and Beyond `_ Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2 ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(RAdamW, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue # Perform optimization step grad = p.grad.data if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] eps = group["eps"] lr = group["lr"] if "rho_inf" not in group: group["rho_inf"] = 2 / (1 - beta2) - 1 rho_inf = group["rho_inf"] state["step"] += 1 t = state["step"] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) rho_t = rho_inf - ((2 * t * (beta2**t)) / (1 - beta2**t)) # Perform stepweight decay p.data.mul_(1 - lr * group["weight_decay"]) if rho_t >= 5: var = exp_avg_sq.sqrt().add_(eps) r = math.sqrt( (1 - beta2**t) * ((rho_t - 4) * (rho_t - 2) * rho_inf) / ((rho_inf - 4) * (rho_inf - 2) * rho_t) ) p.data.addcdiv_(exp_avg, var, value=-lr * r / (1 - beta1**t)) else: p.data.add_(exp_avg, alpha=-lr / (1 - beta1**t)) return loss