File size: 1,388 Bytes
bd2cf7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6bc08
bd2cf7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit as st
import pickle
import os
import torch
from tqdm.auto import tqdm
from langchain.text_splitter import RecursiveCharacterTextSplitter


from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceInstructEmbeddings


from langchain import HuggingFacePipeline
from langchain.chains import RetrievalQA



st.set_page_config(
    page_title = 'aitGPT',
    page_icon = '✅')


st.markdown("# Hello")


with open("ait-web-document", "rb") as fp:
    ait_web_documents = pickle.load(fp)
    
    
text_splitter = RecursiveCharacterTextSplitter(
    # Set a really small chunk size, just to show.
    chunk_size = 500,
    chunk_overlap  = 100,
    length_function = len,
)

chunked_text = text_splitter.create_documents([doc for doc in tqdm(ait_web_documents)])


st.markdown(f"Number of Documents: {len(ait_web_documents)}")
st.markdown(f"Number of chunked texts: {len(chunked_text)}")


embedding_model = HuggingFaceInstructEmbeddings(model_name='hkunlp/instructor-base',
                                                model_kwargs = {'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')})
persist_directory = 'db_chunk_500'
db_chunk_500 = Chroma.from_documents(documents= chunked_text,
                           embedding= embedding_model,
                           persist_directory=persist_directory)

print("load done")