Spaces:
Paused
Paused
File size: 7,846 Bytes
fb0c967 bd2cf7b e221fec b8484c0 bd2cf7b e221fec 93ac82b bd2cf7b 8421d14 9359dde bd2cf7b 8421d14 58f8dd3 8421d14 bd2cf7b 8421d14 bd2cf7b 8421d14 7508414 8421d14 5ef51e2 ea780f0 b8484c0 affd12c b8484c0 affd12c b8484c0 affd12c b8484c0 affd12c b8484c0 8421d14 e221fec b8484c0 93ac82b b8484c0 e221fec 8421d14 5ef51e2 9359dde 5ef51e2 9359dde bd2cf7b e221fec 5ef51e2 e221fec b8484c0 8421d14 b8484c0 5ef51e2 e221fec 5ef51e2 e221fec b8484c0 5ef51e2 b8484c0 5ef51e2 b8484c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# First demo using one-query based UI style
import streamlit as st
import pandas as pd
import numpy as np
import datetime
import gspread
import pickle
import os
import csv
import json
import torch
from tqdm.auto import tqdm
from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain import HuggingFacePipeline
from langchain.chains import RetrievalQA
st.set_page_config(
page_title = 'aitGPT',
page_icon = 'β
')
@st.cache_data
def load_scraped_web_info():
with open("ait-web-document", "rb") as fp:
ait_web_documents = pickle.load(fp)
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size = 500,
chunk_overlap = 100,
length_function = len,
)
chunked_text = text_splitter.create_documents([doc for doc in tqdm(ait_web_documents)])
@st.cache_resource
def load_embedding_model():
embedding_model = HuggingFaceInstructEmbeddings(model_name='hkunlp/instructor-base',
model_kwargs = {'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')})
return embedding_model
@st.cache_data
def load_faiss_index():
vector_database = FAISS.load_local("faiss_index_web_and_curri_new", embedding_model) #CHANGE THIS FAISS EMBEDDED KNOWLEDGE
return vector_database
@st.cache_resource
def load_llm_model():
# llm = HuggingFacePipeline.from_model_id(model_id= 'lmsys/fastchat-t5-3b-v1.0',
# task= 'text2text-generation',
# model_kwargs={ "device_map": "auto",
# "load_in_8bit": True,"max_length": 256, "temperature": 0,
# "repetition_penalty": 1.5})
llm = HuggingFacePipeline.from_model_id(model_id= 'lmsys/fastchat-t5-3b-v1.0',
task= 'text2text-generation',
model_kwargs={ "max_length": 256, "temperature": 0,
"torch_dtype":torch.float32,
"repetition_penalty": 1.3})
return llm
def load_retriever(llm, db):
qa_retriever = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff",
retriever=db.as_retriever())
return qa_retriever
def retrieve_document(query_input):
related_doc = vector_database.similarity_search(query_input)
return related_doc
def retrieve_answer(query_input):
prompt_answer= query_input + " " + "Try to elaborate as much as you can."
answer = qa_retriever.run(prompt_answer)
output = st.text_area(label="Retrieved documents", value=answer[6:]) #this positional slicing helps remove "<pad> " at the beginning
st.markdown('---')
score = st.radio(label = 'please select the rating score for overall satifaction and helpfullness of the bot answer', options=[0, 1,2,3,4,5], horizontal=True,
on_change=update_worksheet_qa, key='rating')
return answer[6:] #this positional slicing helps remove "<pad> " at the beginning
# def update_score():
# st.session_state.session_rating = st.session_state.rating
def update_worksheet_qa():
st.session_state.session_rating = st.session_state.rating
#This if helps validate the initiated rating, if 0, then the google sheet would not be updated
#(edited) now even with the score of 0, we still want to store the log because some users do not give the score to complete the logging
if st.session_state.session_rating == 0:
worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format),
st.session_state.history[-1]['question'],
st.session_state.history[-1]['generated_answer'],
st.session_state.session_rating
])
else:
worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format),
st.session_state.history[-1]['question'],
st.session_state.history[-1]['generated_answer'],
st.session_state.session_rating
])
def update_worksheet_comment():
worksheet_comment.append_row([datetime.datetime.now().strftime(datetime_format),
feedback_input])
success_message = st.success('Feedback successfully submitted, thank you', icon="β
",
)
time.sleep(3)
success_message.empty()
#--------------
if "history" not in st.session_state:
st.session_state.history = []
if "session_rating" not in st.session_state:
st.session_state.session_rating = 0
credentials= json.loads(st.secrets['google_sheet_credential'])
service_account = gspread.service_account_from_dict(credentials)
workbook= service_account.open("aitGPT-qa-log")
worksheet_qa = workbook.worksheet("Sheet1")
worksheet_comment = workbook.worksheet("Sheet2")
datetime_format= "%Y-%m-%d %H:%M:%S"
load_scraped_web_info()
embedding_model = load_embedding_model()
vector_database = load_faiss_index()
llm_model = load_llm_model()
qa_retriever = load_retriever(llm= llm_model, db= vector_database)
print("all load done")
st.write("# aitGPT π€ ")
st.markdown("""
#### The aitGPT project is a virtual assistant developed by the :green[Asian Institute of Technology] that contains a vast amount of information gathered from 205 AIT-related websites.
The goal of this chatbot is to provide an alternative way for applicants and current students to access information about the institute, including admission procedures, campus facilities, and more.
""")
st.write(' β οΈ Please expect to wait **~ 10 - 20 seconds per question** as thi app is running on CPU against 3-billion-parameter LLM')
st.markdown("---")
st.write(" ")
st.write("""
### β Ask a question
""")
query_input = st.text_area(label= 'What would you like to know about AIT?' , key = 'my_text_input')
generate_button = st.button(label = 'Ask question!')
if generate_button:
answer = retrieve_answer(query_input)
log = {"timestamp": datetime.datetime.now(),
"question":query_input,
"generated_answer": answer,
"rating":st.session_state.session_rating }
st.session_state.history.append(log)
update_worksheet_qa()
st.write(" ")
st.write(" ")
st.markdown("---")
st.write("""
### π Your voice matters
""")
feedback_input = st.text_area(label= 'please leave your feedback or any ideas to make this bot more knowledgeable and fun')
feedback_button = st.button(label = 'Submit feedback!')
if feedback_button:
update_worksheet_comment()
# if st.session_state.session_rating == 0:
# pass
# else:
# with open('test_db', 'a') as csvfile:
# writer = csv.writer(csvfile)
# writer.writerow([st.session_state.history[-1]['timestamp'], st.session_state.history[-1]['question'],
# st.session_state.history[-1]['generated_answer'], st.session_state.session_rating ])
# st.session_state.session_rating = 0
# test_df = pd.read_csv("test_db", index_col=0)
# test_df.sort_values(by = ['timestamp'],
# axis=0,
# ascending=False,
# inplace=True)
# st.dataframe(test_df) |