Spaces:
Runtime error
Runtime error
ncoop57
commited on
Commit
•
4b039b3
1
Parent(s):
3e6eddc
Add using real data
Browse files
app.py
CHANGED
@@ -2,219 +2,54 @@ import gradio as gr
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
4 |
from functools import partial
|
5 |
-
import datasets
|
6 |
from datasets import load_dataset
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
"leetcode" : leet_ds["train"],
|
47 |
-
"pileoflaw" : pileoflaw_ds["train"],
|
48 |
-
"pubmed" : pubmed_ds["train"],
|
49 |
-
"s2orc" : s2orc_ds["train"],
|
50 |
-
"se" : se_ds["train"],
|
51 |
-
"usenet" : usenet_ds["train"],
|
52 |
-
"uspto" : uspto_ds["train"],
|
53 |
-
"ubuntuirc" : ubuntuirc_ds["train"],
|
54 |
-
"arxiv" : arxiv_ds["train"]
|
55 |
}
|
56 |
|
57 |
-
# dataset_data = {
|
58 |
-
# "AI4Code": {
|
59 |
-
# # create fake data for the different ratios
|
60 |
-
# "word_rep_ratios": np.random.randn(1000),
|
61 |
-
# "char_rep_ratios": np.random.randn(1000),
|
62 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
63 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
64 |
-
# },
|
65 |
-
# "AMPS": {
|
66 |
-
# # create fake data for the different ratios
|
67 |
-
# "word_rep_ratios": np.random.randn(1000),
|
68 |
-
# "char_rep_ratios": np.random.randn(1000),
|
69 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
70 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
71 |
-
# },
|
72 |
-
# "ASFPublicMail": {
|
73 |
-
# # create fake data for the different ratios
|
74 |
-
# "word_rep_ratios": np.random.randn(1000),
|
75 |
-
# "char_rep_ratios": np.random.randn(1000),
|
76 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
77 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
78 |
-
# },
|
79 |
-
# "Books3": {
|
80 |
-
# # create fake data for the different ratios
|
81 |
-
# "word_rep_ratios": np.random.randn(1000),
|
82 |
-
# "char_rep_ratios": np.random.randn(1000),
|
83 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
84 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
85 |
-
# },
|
86 |
-
# "CPDataset": {
|
87 |
-
# # create fake data for the different ratios
|
88 |
-
# "word_rep_ratios": np.random.randn(1000),
|
89 |
-
# "char_rep_ratios": np.random.randn(1000),
|
90 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
91 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
92 |
-
# },
|
93 |
-
# "DMMath": {
|
94 |
-
# # create fake data for the different ratios
|
95 |
-
# "word_rep_ratios": np.random.randn(1000),
|
96 |
-
# "char_rep_ratios": np.random.randn(1000),
|
97 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
98 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
99 |
-
# },
|
100 |
-
# "Discourse": {
|
101 |
-
# # create fake data for the different ratios
|
102 |
-
# "word_rep_ratios": np.random.randn(1000),
|
103 |
-
# "char_rep_ratios": np.random.randn(1000),
|
104 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
105 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
106 |
-
# },
|
107 |
-
# "Enwiki": {
|
108 |
-
# # create fake data for the different ratios
|
109 |
-
# "word_rep_ratios": np.random.randn(1000),
|
110 |
-
# "char_rep_ratios": np.random.randn(1000),
|
111 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
112 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
113 |
-
# },
|
114 |
-
# "EuroParliamentProceedings": {
|
115 |
-
# # create fake data for the different ratios
|
116 |
-
# "word_rep_ratios": np.random.randn(1000),
|
117 |
-
# "char_rep_ratios": np.random.randn(1000),
|
118 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
119 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
120 |
-
# },
|
121 |
-
# "FreeLaw_Options": {
|
122 |
-
# # create fake data for the different ratios
|
123 |
-
# "word_rep_ratios": np.random.randn(1000),
|
124 |
-
# "char_rep_ratios": np.random.randn(1000),
|
125 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
126 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
127 |
-
# },
|
128 |
-
# "GitHubDiff": {
|
129 |
-
# # create fake data for the different ratios
|
130 |
-
# "word_rep_ratios": np.random.randn(1000),
|
131 |
-
# "char_rep_ratios": np.random.randn(1000),
|
132 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
133 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
134 |
-
# },
|
135 |
-
# "GitHubIssues": {
|
136 |
-
# # create fake data for the different ratios
|
137 |
-
# "word_rep_ratios": np.random.randn(1000),
|
138 |
-
# "char_rep_ratios": np.random.randn(1000),
|
139 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
140 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
141 |
-
# },
|
142 |
-
# "Gutenberg": {
|
143 |
-
# # create fake data for the different ratios
|
144 |
-
# "word_rep_ratios": np.random.randn(1000),
|
145 |
-
# "char_rep_ratios": np.random.randn(1000),
|
146 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
147 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
148 |
-
# },
|
149 |
-
# "LeetCode": {
|
150 |
-
# # create fake data for the different ratios
|
151 |
-
# "word_rep_ratios": np.random.randn(1000),
|
152 |
-
# "char_rep_ratios": np.random.randn(1000),
|
153 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
154 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
155 |
-
# },
|
156 |
-
# "PileOfLaw": {
|
157 |
-
# # create fake data for the different ratios
|
158 |
-
# "word_rep_ratios": np.random.randn(1000),
|
159 |
-
# "char_rep_ratios": np.random.randn(1000),
|
160 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
161 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
162 |
-
# },
|
163 |
-
# "PubMed": {
|
164 |
-
# # create fake data for the different ratios
|
165 |
-
# "word_rep_ratios": np.random.randn(1000),
|
166 |
-
# "char_rep_ratios": np.random.randn(1000),
|
167 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
168 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
169 |
-
# },
|
170 |
-
# "S2ORC": {
|
171 |
-
# # create fake data for the different ratios
|
172 |
-
# "word_rep_ratios": np.random.randn(1000),
|
173 |
-
# "char_rep_ratios": np.random.randn(1000),
|
174 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
175 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
176 |
-
# },
|
177 |
-
# "StackExchange": {
|
178 |
-
# # create fake data for the different ratios
|
179 |
-
# "word_rep_ratios": np.random.randn(1000),
|
180 |
-
# "char_rep_ratios": np.random.randn(1000),
|
181 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
182 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
183 |
-
# },
|
184 |
-
# "USENET": {
|
185 |
-
# # create fake data for the different ratios
|
186 |
-
# "word_rep_ratios": np.random.randn(1000),
|
187 |
-
# "char_rep_ratios": np.random.randn(1000),
|
188 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
189 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
190 |
-
# },
|
191 |
-
# "USPTO": {
|
192 |
-
# # create fake data for the different ratios
|
193 |
-
# "word_rep_ratios": np.random.randn(1000),
|
194 |
-
# "char_rep_ratios": np.random.randn(1000),
|
195 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
196 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
197 |
-
# },
|
198 |
-
# "UbuntuIRC": {
|
199 |
-
# # create fake data for the different ratios
|
200 |
-
# "word_rep_ratios": np.random.randn(1000),
|
201 |
-
# "char_rep_ratios": np.random.randn(1000),
|
202 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
203 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
204 |
-
# },
|
205 |
-
# "arXiv": {
|
206 |
-
# # create fake data for the different ratios
|
207 |
-
# "word_rep_ratios": np.random.randn(1000),
|
208 |
-
# "char_rep_ratios": np.random.randn(1000),
|
209 |
-
# "flagged_word_ratios": np.random.randn(1000),
|
210 |
-
# "num_words": np.random.randint(0, 1000, 1000),
|
211 |
-
# },
|
212 |
-
# }
|
213 |
-
|
214 |
def plt_plot(ratio, dataset, threshold):
|
|
|
215 |
x = dataset_data[dataset][ratio]
|
216 |
# calculate percentage of data that will be removed given threshold
|
217 |
-
perc = np.sum(x
|
218 |
# create a figure
|
219 |
fig = plt.figure()
|
220 |
# add a subplot
|
@@ -233,22 +68,22 @@ def plt_plot(ratio, dataset, threshold):
|
|
233 |
return fig
|
234 |
|
235 |
with gr.Blocks() as demo:
|
236 |
-
dataset = gr.Radio(
|
237 |
print(dataset.value)
|
238 |
|
239 |
with gr.Tab("Character Repetition Ratio"):
|
240 |
# plot some random data
|
241 |
plot = gr.Plot()
|
242 |
-
threshold = gr.Slider(minimum=0, maximum=
|
243 |
calculate = gr.Button("Calculate")
|
244 |
-
plot_fn = partial(plt_plot, "
|
245 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
246 |
|
247 |
with gr.Tab("Word Repetition Ratio"):# plot some random data
|
248 |
plot = gr.Plot()
|
249 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
250 |
calculate = gr.Button("Calculate")
|
251 |
-
plot_fn = partial(plt_plot, "
|
252 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
253 |
|
254 |
with gr.Tab("Flagged Word Ratio"):# plot some random data
|
@@ -259,4 +94,4 @@ with gr.Blocks() as demo:
|
|
259 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
260 |
|
261 |
if __name__ == "__main__":
|
262 |
-
demo.launch(
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
4 |
from functools import partial
|
|
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
dataset_names = [
|
8 |
+
"AI4Code",
|
9 |
+
"AMPS",
|
10 |
+
"ASFPublicMail",
|
11 |
+
"CPDataset",
|
12 |
+
"DMMath",
|
13 |
+
"Discourse",
|
14 |
+
"Enwiki",
|
15 |
+
"EuroParliamentProceedings",
|
16 |
+
"FreeLaw_Options",
|
17 |
+
"GithubDiff",
|
18 |
+
"GithubIssues",
|
19 |
+
"Gutenberg",
|
20 |
+
"LeetCode",
|
21 |
+
"PileOfLaw",
|
22 |
+
"PubMed",
|
23 |
+
"S2ORC",
|
24 |
+
"StackExchange",
|
25 |
+
"USENET",
|
26 |
+
"USPTO",
|
27 |
+
"UbuntuIRC",
|
28 |
+
"arXiv",
|
29 |
+
]
|
30 |
|
31 |
+
dataset_data = {}
|
32 |
+
for name in dataset_names:
|
33 |
+
path = f"data/{name}/data.json"
|
34 |
+
ds = load_dataset(
|
35 |
+
"CarperAI/pilev2_smol_metadata",
|
36 |
+
data_files=path,
|
37 |
+
use_auth_token=True,
|
38 |
+
split="train",
|
39 |
+
# download_mode="force_redownload",
|
40 |
+
)
|
41 |
+
dataset_data[name] = {
|
42 |
+
"ds": ds,
|
43 |
+
"word_rep_ratios": np.random.randn(len(ds)),
|
44 |
+
"char_rep_ratios": np.array(ds["check_char_repetition_criteria"]),
|
45 |
+
"flagged_word_ratios": np.array(ds["check_flagged_words_criteria"]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
}
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def plt_plot(ratio, dataset, threshold):
|
49 |
+
plt.close("all")
|
50 |
x = dataset_data[dataset][ratio]
|
51 |
# calculate percentage of data that will be removed given threshold
|
52 |
+
perc = np.sum(x > threshold) / len(x)
|
53 |
# create a figure
|
54 |
fig = plt.figure()
|
55 |
# add a subplot
|
|
|
68 |
return fig
|
69 |
|
70 |
with gr.Blocks() as demo:
|
71 |
+
dataset = gr.Radio(dataset_names, label="Dataset", value="arXiv")
|
72 |
print(dataset.value)
|
73 |
|
74 |
with gr.Tab("Character Repetition Ratio"):
|
75 |
# plot some random data
|
76 |
plot = gr.Plot()
|
77 |
+
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
78 |
calculate = gr.Button("Calculate")
|
79 |
+
plot_fn = partial(plt_plot, "char_rep_ratios")
|
80 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
81 |
|
82 |
with gr.Tab("Word Repetition Ratio"):# plot some random data
|
83 |
plot = gr.Plot()
|
84 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
85 |
calculate = gr.Button("Calculate")
|
86 |
+
plot_fn = partial(plt_plot, "word_rep_ratios")
|
87 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
88 |
|
89 |
with gr.Tab("Flagged Word Ratio"):# plot some random data
|
|
|
94 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
+
demo.launch()
|