Spaces:
Running
Running
import numpy as np | |
from skimage import io | |
from skimage.segmentation import mark_boundaries | |
def save_item_for_vis(item, out_file): | |
mask = item['mask'] > 0.5 | |
if mask.ndim == 3: | |
mask = mask[0] | |
img = mark_boundaries(np.transpose(item['image'], (1, 2, 0)), | |
mask, | |
color=(1., 0., 0.), | |
outline_color=(1., 1., 1.), | |
mode='thick') | |
if 'inpainted' in item: | |
inp_img = mark_boundaries(np.transpose(item['inpainted'], (1, 2, 0)), | |
mask, | |
color=(1., 0., 0.), | |
mode='outer') | |
img = np.concatenate((img, inp_img), axis=1) | |
img = np.clip(img * 255, 0, 255).astype('uint8') | |
io.imsave(out_file, img) | |
def save_mask_for_sidebyside(item, out_file): | |
mask = item['mask']# > 0.5 | |
if mask.ndim == 3: | |
mask = mask[0] | |
mask = np.clip(mask * 255, 0, 255).astype('uint8') | |
io.imsave(out_file, mask) | |
def save_img_for_sidebyside(item, out_file): | |
img = np.transpose(item['image'], (1, 2, 0)) | |
img = np.clip(img * 255, 0, 255).astype('uint8') | |
io.imsave(out_file, img) |