import os import imageio from PIL import Image import gradio as gr import cv2 import paddlehub as hub import onnxruntime # Download and setup models os.system("wget https://huggingface.co/Carve/LaMa-ONNX/resolve/main/lama_fp32.onnx") os.system("pip install onnxruntime imageio") os.makedirs("data", exist_ok=True) os.makedirs("dataout", exist_ok=True) # Load LaMa ONNX model sess_options = onnxruntime.SessionOptions() lama_model = onnxruntime.InferenceSession('lama_fp32.onnx', sess_options=sess_options) # Load U^2-Net model for automatic masking u2net_model = hub.Module(name='U2Net') # --- Helper Functions --- def prepare_image(image, target_size=(512, 512)): """Resizes and preprocesses image for LaMa model.""" if isinstance(image, Image.Image): image = image.resize(target_size) image = np.array(image) elif isinstance(image, np.ndarray): image = cv2.resize(image, target_size) else: raise ValueError("Input image should be either PIL Image or numpy array!") # Normalize to [0, 1] and convert to CHW format image = image.astype(np.float32) / 255.0 if image.ndim == 3: image = np.transpose(image, (2, 0, 1)) elif image.ndim == 2: image = image[np.newaxis, ...] return image[np.newaxis, ...] # Add batch dimension def generate_mask(image, method="automatic"): """Generates mask from image using U^2-Net or user input.""" if method == "automatic": input_size = 320 # Adjust based on U^2-Net requirements result = u2net_model.Segmentation( images=[cv2.cvtColor(image, cv2.COLOR_RGB2BGR)], paths=None, batch_size=1, input_size=input_size, output_dir='output', visualization=False ) mask = Image.fromarray(result[0]['mask']) mask = mask.resize((512, 512)) # Resize to match LaMa input mask.save("./data/data_mask.png") else: # "manual" mask = imageio.imread("./data/data_mask.png") mask = Image.fromarray(mask).convert("L") # Ensure grayscale mask = mask.resize((512, 512)) return prepare_image(mask, (512, 512)) def inpaint_image(image, mask): """Performs inpainting using the LaMa model.""" outputs = lama_model.run(None, {'image': image, 'mask': mask}) output = outputs[0][0] output = output.transpose(1, 2, 0) output = (output * 255).astype(np.uint8) return Image.fromarray(output) # --- Gradio Interface --- def process_image(input_image, mask_option): """Main function for Gradio interface.""" imageio.imwrite("./data/data.png", input_image) image = prepare_image(input_image) mask = generate_mask(input_image, method=mask_option) inpainted_image = inpaint_image(image, mask) inpainted_image = inpainted_image.resize(Image.open("./data/data.png").size) inpainted_image.save("./dataout/data_mask.png") return "./dataout/data_mask.png", "./data/data_mask.png" iface = gr.Interface( fn=process_image, inputs=[ gr.Image(label="Input Image", type="numpy"), gr.Radio(choices=["automatic", "manual"], type="value", label="Masking Option") ], outputs=[ gr.Image(type="file", label="Inpainted Image"), gr.Image(type="file", label="Generated Mask") ], title="LaMa Image Inpainting", description="Image inpainting with LaMa and U^2-Net. Upload your image and choose automatic or manual masking.", ) iface.launch()