Caslow's picture
cpu
5b7d699
raw
history blame
6.85 kB
from transformers import TextStreamer, AutoModelForCausalLM, AutoTokenizer
from typing import Tuple, List, Dict
import torch
# from unsloth import FastLanguageModel
def load_model(
model_name: str,
max_seq_length: int = 2048,
dtype: torch.dtype = torch.float32,
load_in_4bit: bool = False
) -> Tuple[AutoModelForCausalLM, any]:
"""
Load and initialize the language model for inference.
Args:
model_name (str): Name of the pre-trained model to load
max_seq_length (int): Maximum sequence length for the model
dtype (torch.dtype): Data type for model weights
load_in_4bit (bool): Whether to load model in 4-bit quantization
Returns:
Tuple[FastLanguageModel, any]: Tuple containing the model and tokenizer
"""
kwargs = {
"device_map": "cpu",
"torch_dtype": dtype,
"low_cpu_mem_usage": True,
"_from_auto": False, # Prevent automatic quantization detection
"quantization_config": None # Explicitly set no quantization
}
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_name,
**kwargs
)
model.eval() # Set model to evaluation mode
return model, tokenizer
def prepare_input(
messages: List[Dict[str, str]],
tokenizer: any,
device: str = "cpu"
) -> torch.Tensor:
"""
Prepare input for the model by applying chat template and tokenization.
Args:
messages (List[Dict[str, str]]): List of message dictionaries
tokenizer: The tokenizer instance
device (str): Device to load tensors to ("cuda" or "cpu")
Returns:
torch.Tensor: Prepared input tensor
"""
return tokenizer(
messages,
# tokenize=True,
# add_generation_prompt=True,
return_tensors="pt",
padding=True,
truncation=True,
)["input_ids"]
def generate_response(
model: AutoModelForCausalLM,
inputs: torch.Tensor,
tokenizer: any,
max_new_tokens: int = 2000,
temperature: float = 1.5,
min_p: float = 0.1,
skip_prompt: bool = True
) -> str:
"""
Generate response using the model.
Args:
model (FastLanguageModel): The language model
inputs (torch.Tensor): Prepared input tensor
tokenizer: The tokenizer instance
max_new_tokens (int): Maximum number of tokens to generate
temperature (float): Sampling temperature
min_p (float): Minimum probability for nucleus sampling
skip_prompt (bool): Whether to skip prompt in output
Returns:
str: Generated response
"""
device = torch.device("cpu")
# text_streamer = TextStreamer(tokenizer, skip_prompt=skip_prompt)
inputs = tokenizer(inputs, return_tensors="pt").to(device)
outputs = model.generate(
inputs,
max_length=2000,
do_sample=False # Deterministic generation
# num_return_sequences=1,
# streamer=text_streamer,
# max_new_tokens=max_new_tokens,
# use_cache=True,
# temperature=temperature,
# min_p=min_p
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
def main(
USER_INPUT_CODE = "program sum_of_numbers\n implicit none\n integer :: n, i, sum\n\n ! Initialize variables\n sum = 0\n\n ! Get user input\n print *, \"Enter a positive integer:\"\n read *, n\n\n ! Calculate the sum of numbers from 1 to n\n do i = 1, n\n sum = sum + i\n end do\n\n ! Print the result\n print *, \"The sum of numbers from 1 to\", n, \"is\", sum\nend program sum_of_numbers",
USER_INPUT_EXPLANATION = "The provided Fortran code snippet is a program that calculates the sum of integers from 1 to n, where n is provided by the user. It uses a simple procedural approach, including variable declarations, input handling, and a loop for the summation.\n\nThe functionality of the program is explained in detail in the elaboration. The program starts by initializing variables and prompting the user for input. It then calculates the sum using a do loop, iterating from 1 to n, and accumulating the result in a variable. Finally, it prints the computed sum to the console.\n\nThis program demonstrates a straightforward application of Fortran's capabilities for handling loops and basic arithmetic operations. It is a clear example of how Fortran can be used to solve mathematical problems involving user interaction and iterative computations.",
MODEL_PATH = "lora_model"
):
"""
Main function to demonstrate the inference pipeline.
"""
# Import configuration
from config import max_seq_length, dtype, load_in_4bit
# Example messages
messages = [
{
"role": "user",
"content": str("[Fortran Code]") + str(USER_INPUT_CODE) + str("[Fortran Code Explain]") + str(USER_INPUT_EXPLANATION)
}
]
# Load model
model, tokenizer = load_model(
model_name=MODEL_PATH
)
# Prepare input
inputs = prepare_input(messages, tokenizer)
# Generate response
return generate_response(model, inputs, tokenizer)
if __name__ == "__main__":
# YOUR_FORTRAN_CODE_HERE
USER_INPUT_CODE = "program sum_of_numbers\n implicit none\n integer :: n, i, sum\n\n ! Initialize variables\n sum = 0\n\n ! Get user input\n print *, \"Enter a positive integer:\"\n read *, n\n\n ! Calculate the sum of numbers from 1 to n\n do i = 1, n\n sum = sum + i\n end do\n\n ! Print the result\n print *, \"The sum of numbers from 1 to\", n, \"is\", sum\nend program sum_of_numbers"
# YOUR_EXPLANATION_HERE
USER_INPUT_EXPLANATION = "The provided Fortran code snippet is a program that calculates the sum of integers from 1 to n, where n is provided by the user. It uses a simple procedural approach, including variable declarations, input handling, and a loop for the summation.\n\nThe functionality of the program is explained in detail in the elaboration. The program starts by initializing variables and prompting the user for input. It then calculates the sum using a do loop, iterating from 1 to n, and accumulating the result in a variable. Finally, it prints the computed sum to the console.\n\nThis program demonstrates a straightforward application of Fortran's capabilities for handling loops and basic arithmetic operations. It is a clear example of how Fortran can be used to solve mathematical problems involving user interaction and iterative computations."
# YOUR_MODEL_PATH_HERE
MODEL_PATH = "lora_model"
main(USER_INPUT_CODE, USER_INPUT_EXPLANATION, MODEL_PATH)