Spaces:
Runtime error
Runtime error
CazimirRoman
commited on
Commit
•
d64a8e1
1
Parent(s):
a63e5a1
initial commit
Browse files- Dockerfile +30 -0
- app/app.py +110 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
# we are using open AI here. no need to download model
|
10 |
+
# RUN python3 -c 'from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM;model=AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn");model.save_pretrained("models");tokenizer=AutoTokenizer.from_pretrained("facebook/bart-large-cnn");tokenizer.save_pretrained("models")'
|
11 |
+
|
12 |
+
# Set up a new user named "user" with user ID 1000
|
13 |
+
RUN useradd -m -u 1000 user
|
14 |
+
# Switch to the "user" user
|
15 |
+
USER user
|
16 |
+
# Set home to the user's home directory
|
17 |
+
ENV HOME=/home/user
|
18 |
+
ENV PATH=/home/user/.local/bin:$PATH
|
19 |
+
|
20 |
+
# Set the working directory to the user's home directory
|
21 |
+
WORKDIR $HOME/app
|
22 |
+
|
23 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
24 |
+
COPY --chown=user . $HOME/app
|
25 |
+
|
26 |
+
COPY ./app /code/app
|
27 |
+
|
28 |
+
# CMD ["uvicorn", "app.app:main", "--host", "0.0.0.0", "--port", "7860"]
|
29 |
+
|
30 |
+
ENTRYPOINT ["streamlit", "run", "app/app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
app/app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import pickle
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.llms import OpenAI
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain.callbacks import get_openai_callback
|
12 |
+
|
13 |
+
import os
|
14 |
+
|
15 |
+
with st.sidebar:
|
16 |
+
st.title('PDF Chat App')
|
17 |
+
st.markdown('''
|
18 |
+
## About
|
19 |
+
This app is an LLM-powered PDF chatbot built using:
|
20 |
+
- [Streamlit](https://streamlit.io/)
|
21 |
+
- [LangChain](https://python.langchain.com/)
|
22 |
+
- [OpenAI](https://platform.openai.com/docs/models) LLM model
|
23 |
+
|
24 |
+
## How it works
|
25 |
+
- Load up a PDF file
|
26 |
+
- Extract the text from the PDF file
|
27 |
+
- Split the text into chunks
|
28 |
+
- Create embeddings using OpenAI, which are vectors of floating-point numbers that measure the relatedness of text strings
|
29 |
+
- Save these embeddings as vectors in a vector store, such as FAISS
|
30 |
+
- Use a similarity search to ask a question
|
31 |
+
- Get the answer and tokens used from OpenAI
|
32 |
+
|
33 |
+
''')
|
34 |
+
st.write('Made with 🤖 by [Cazimir Roman](https://cazimir.dev)')
|
35 |
+
|
36 |
+
def load_app():
|
37 |
+
# upload a PDF file
|
38 |
+
pdf = st.file_uploader("Upload your PDF", type='pdf')
|
39 |
+
|
40 |
+
if pdf is not None:
|
41 |
+
pdf_reader = PdfReader(pdf)
|
42 |
+
|
43 |
+
text = ""
|
44 |
+
for page in pdf_reader.pages:
|
45 |
+
text += page.extract_text()
|
46 |
+
|
47 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
+
chunk_size = 1000,
|
49 |
+
chunk_overlap=200,
|
50 |
+
length_function=len
|
51 |
+
)
|
52 |
+
|
53 |
+
chunks = text_splitter.split_text(text=text)
|
54 |
+
|
55 |
+
store_name = pdf.name[:-4]
|
56 |
+
|
57 |
+
# check if vector store exists. if not, create one
|
58 |
+
if os.path.exists(f"{store_name}.pkl"):
|
59 |
+
with open(f"{store_name}.pkl", "rb") as f:
|
60 |
+
vectorStore = pickle.load(f)
|
61 |
+
st.success('Text embeddings loaded from disk')
|
62 |
+
else:
|
63 |
+
with st.spinner("Creating vector store embeddings..."):
|
64 |
+
embeddings = OpenAIEmbeddings()
|
65 |
+
vectorStore = FAISS.from_texts(chunks, embeddings)
|
66 |
+
with open(f"{store_name}.pkl", "wb") as f:
|
67 |
+
pickle.dump(vectorStore, f)
|
68 |
+
st.success('Embeddings computation completed')
|
69 |
+
|
70 |
+
# Accept user question/query
|
71 |
+
st.divider()
|
72 |
+
query = st.text_input("Ask a question about your PDF file")
|
73 |
+
|
74 |
+
if query:
|
75 |
+
st.write(f"You asked: {query}")
|
76 |
+
with st.spinner("Thinking..."):
|
77 |
+
# top 3 that are most similar to our query
|
78 |
+
docs = vectorStore.similarity_search(query)
|
79 |
+
llm = OpenAI(temperature=0)
|
80 |
+
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
81 |
+
with get_openai_callback() as cb:
|
82 |
+
response = chain.run(input_documents=docs, question=query)
|
83 |
+
st.write(response)
|
84 |
+
|
85 |
+
def main():
|
86 |
+
print("Main called")
|
87 |
+
st.header("Chat with your PDF")
|
88 |
+
|
89 |
+
container = st.container()
|
90 |
+
|
91 |
+
with container:
|
92 |
+
open_ai_key = os.getenv("OPENAI_API_KEY")
|
93 |
+
api_key = container.text_input("Enter your OpenAI API key", type="password", value="" if open_ai_key == None else open_ai_key)
|
94 |
+
# You can find it here: https://platform.openai.com/account/api-keys
|
95 |
+
submit = container.button("Submit")
|
96 |
+
|
97 |
+
if open_ai_key:
|
98 |
+
load_app()
|
99 |
+
|
100 |
+
# submit button is pressed
|
101 |
+
if submit:
|
102 |
+
# check if api key length correct
|
103 |
+
if len(api_key) == 51:
|
104 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
105 |
+
load_app()
|
106 |
+
else:
|
107 |
+
st.error("Api key is not correct")
|
108 |
+
|
109 |
+
if __name__ == '__main__':
|
110 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
PyPDF2
|
3 |
+
python-dotenv
|
4 |
+
streamlit
|
5 |
+
faiss-cpu
|
6 |
+
streamlit-extras
|
7 |
+
openai
|
8 |
+
altair<5
|
9 |
+
tiktoken
|
10 |
+
sentence_transformers
|
11 |
+
torch
|