Spaces:
Running
on
Zero
Running
on
Zero
fix bug
Browse files
app.py
CHANGED
@@ -256,19 +256,128 @@ hands = mp_hands.Hands(
|
|
256 |
min_detection_confidence=0.1,
|
257 |
)
|
258 |
|
259 |
-
def make_ref_cond(
|
260 |
-
|
261 |
-
):
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
|
270 |
def get_ref_anno(ref):
|
271 |
-
print("inside get_ref_anno")
|
272 |
if ref is None:
|
273 |
return (
|
274 |
None,
|
@@ -280,11 +389,8 @@ def get_ref_anno(ref):
|
|
280 |
img = ref["composite"][..., :3]
|
281 |
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
282 |
keypts = np.zeros((42, 2))
|
283 |
-
print("ready to run mediapipe")
|
284 |
if REF_POSE_MASK:
|
285 |
-
print(f"type(img): {type(img)}, img.shape: {img.shape}, img.dtype: {img.dtype}")
|
286 |
mp_pose = hands.process(img)
|
287 |
-
print("processed mediapipe")
|
288 |
detected = np.array([0, 0])
|
289 |
start_idx = 0
|
290 |
if mp_pose.multi_hand_landmarks:
|
@@ -317,13 +423,11 @@ def get_ref_anno(ref):
|
|
317 |
elif keypts[21].sum() != 0:
|
318 |
input_point = np.array(keypts[21:22])
|
319 |
input_label = np.array([1])
|
320 |
-
print("ready to run SAM")
|
321 |
masks, _, _ = sam_predictor.predict(
|
322 |
point_coords=input_point,
|
323 |
point_labels=input_label,
|
324 |
multimask_output=False,
|
325 |
)
|
326 |
-
print("finished SAM")
|
327 |
hand_mask = masks[0]
|
328 |
masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
|
329 |
ref_pose = visualize_hand(keypts, masked_img)
|
@@ -332,47 +436,62 @@ def get_ref_anno(ref):
|
|
332 |
else:
|
333 |
hand_mask = np.zeros_like(img[:,:, 0])
|
334 |
ref_pose = np.zeros_like(img)
|
|
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
348 |
)
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
# target_size=opts.image_size,
|
368 |
-
# latent_size=opts.latent_size,
|
369 |
-
)
|
370 |
-
print("finished autoencoder")
|
371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
if not REF_POSE_MASK:
|
373 |
heatmaps = torch.zeros_like(heatmaps)
|
374 |
mask = torch.zeros_like(mask)
|
|
|
|
|
375 |
ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
|
|
376 |
|
377 |
return img, ref_pose, ref_cond
|
378 |
|
|
|
256 |
min_detection_confidence=0.1,
|
257 |
)
|
258 |
|
259 |
+
# def make_ref_cond(
|
260 |
+
# image
|
261 |
+
# ):
|
262 |
+
# print("ready to run autoencoder")
|
263 |
+
# # print(f"image.device: {image.device}, type(image): {type(image)}")
|
264 |
+
# # image = image.to("cuda")
|
265 |
+
# print(f"autoencoder device: {next(autoencoder.parameters()).device}")
|
266 |
+
# latent = opts.latent_scaling_factor * autoencoder.encode(image[None, ...]).sample()
|
267 |
+
# return image[None, ...], latent
|
268 |
+
|
269 |
+
|
270 |
+
# def get_ref_anno(ref):
|
271 |
+
# print("inside get_ref_anno")
|
272 |
+
# if ref is None:
|
273 |
+
# return (
|
274 |
+
# None,
|
275 |
+
# None,
|
276 |
+
# None,
|
277 |
+
# None,
|
278 |
+
# None,
|
279 |
+
# )
|
280 |
+
# img = ref["composite"][..., :3]
|
281 |
+
# img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
282 |
+
# keypts = np.zeros((42, 2))
|
283 |
+
# print("ready to run mediapipe")
|
284 |
+
# if REF_POSE_MASK:
|
285 |
+
# print(f"type(img): {type(img)}, img.shape: {img.shape}, img.dtype: {img.dtype}")
|
286 |
+
# mp_pose = hands.process(img)
|
287 |
+
# print("processed mediapipe")
|
288 |
+
# detected = np.array([0, 0])
|
289 |
+
# start_idx = 0
|
290 |
+
# if mp_pose.multi_hand_landmarks:
|
291 |
+
# # handedness is flipped assuming the input image is mirrored in MediaPipe
|
292 |
+
# for hand_landmarks, handedness in zip(
|
293 |
+
# mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
|
294 |
+
# ):
|
295 |
+
# # actually right hand
|
296 |
+
# if handedness.classification[0].label == "Left":
|
297 |
+
# start_idx = 0
|
298 |
+
# detected[0] = 1
|
299 |
+
# # actually left hand
|
300 |
+
# elif handedness.classification[0].label == "Right":
|
301 |
+
# start_idx = 21
|
302 |
+
# detected[1] = 1
|
303 |
+
# for i, landmark in enumerate(hand_landmarks.landmark):
|
304 |
+
# keypts[start_idx + i] = [
|
305 |
+
# landmark.x * opts.image_size[1],
|
306 |
+
# landmark.y * opts.image_size[0],
|
307 |
+
# ]
|
308 |
+
|
309 |
+
# sam_predictor.set_image(img)
|
310 |
+
# l = keypts[:21].shape[0]
|
311 |
+
# if keypts[0].sum() != 0 and keypts[21].sum() != 0:
|
312 |
+
# input_point = np.array([keypts[0], keypts[21]])
|
313 |
+
# input_label = np.array([1, 1])
|
314 |
+
# elif keypts[0].sum() != 0:
|
315 |
+
# input_point = np.array(keypts[:1])
|
316 |
+
# input_label = np.array([1])
|
317 |
+
# elif keypts[21].sum() != 0:
|
318 |
+
# input_point = np.array(keypts[21:22])
|
319 |
+
# input_label = np.array([1])
|
320 |
+
# print("ready to run SAM")
|
321 |
+
# masks, _, _ = sam_predictor.predict(
|
322 |
+
# point_coords=input_point,
|
323 |
+
# point_labels=input_label,
|
324 |
+
# multimask_output=False,
|
325 |
+
# )
|
326 |
+
# print("finished SAM")
|
327 |
+
# hand_mask = masks[0]
|
328 |
+
# masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
|
329 |
+
# ref_pose = visualize_hand(keypts, masked_img)
|
330 |
+
# else:
|
331 |
+
# raise gr.Error("No hands detected in the reference image.")
|
332 |
+
# else:
|
333 |
+
# hand_mask = np.zeros_like(img[:,:, 0])
|
334 |
+
# ref_pose = np.zeros_like(img)
|
335 |
+
|
336 |
+
# image_transform = Compose(
|
337 |
+
# [
|
338 |
+
# ToTensor(),
|
339 |
+
# Resize(opts.image_size),
|
340 |
+
# Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
341 |
+
# ]
|
342 |
+
# )
|
343 |
+
# image = image_transform(img)
|
344 |
+
# kpts_valid = check_keypoints_validity(keypts, opts.image_size)
|
345 |
+
# heatmaps = torch.tensor(
|
346 |
+
# keypoint_heatmap(
|
347 |
+
# scale_keypoint(keypts, opts.image_size, opts.latent_size), opts.latent_size, var=1.0
|
348 |
+
# )
|
349 |
+
# * kpts_valid[:, None, None],
|
350 |
+
# dtype=torch.float,
|
351 |
+
# # device=device,
|
352 |
+
# )[None, ...]
|
353 |
+
# mask = torch.tensor(
|
354 |
+
# cv2.resize(
|
355 |
+
# hand_mask.astype(int),
|
356 |
+
# dsize=opts.latent_size,
|
357 |
+
# interpolation=cv2.INTER_NEAREST,
|
358 |
+
# ),
|
359 |
+
# dtype=torch.float,
|
360 |
+
# # device=device,
|
361 |
+
# ).unsqueeze(0)[None, ...]
|
362 |
+
# image, latent = make_ref_cond(
|
363 |
+
# image,
|
364 |
+
# # keypts,
|
365 |
+
# # hand_mask,
|
366 |
+
# # device=device,
|
367 |
+
# # target_size=opts.image_size,
|
368 |
+
# # latent_size=opts.latent_size,
|
369 |
+
# )
|
370 |
+
# print("finished autoencoder")
|
371 |
+
|
372 |
+
# if not REF_POSE_MASK:
|
373 |
+
# heatmaps = torch.zeros_like(heatmaps)
|
374 |
+
# mask = torch.zeros_like(mask)
|
375 |
+
# ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
376 |
+
|
377 |
+
# return img, ref_pose, ref_cond
|
378 |
|
379 |
|
380 |
def get_ref_anno(ref):
|
|
|
381 |
if ref is None:
|
382 |
return (
|
383 |
None,
|
|
|
389 |
img = ref["composite"][..., :3]
|
390 |
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
391 |
keypts = np.zeros((42, 2))
|
|
|
392 |
if REF_POSE_MASK:
|
|
|
393 |
mp_pose = hands.process(img)
|
|
|
394 |
detected = np.array([0, 0])
|
395 |
start_idx = 0
|
396 |
if mp_pose.multi_hand_landmarks:
|
|
|
423 |
elif keypts[21].sum() != 0:
|
424 |
input_point = np.array(keypts[21:22])
|
425 |
input_label = np.array([1])
|
|
|
426 |
masks, _, _ = sam_predictor.predict(
|
427 |
point_coords=input_point,
|
428 |
point_labels=input_label,
|
429 |
multimask_output=False,
|
430 |
)
|
|
|
431 |
hand_mask = masks[0]
|
432 |
masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
|
433 |
ref_pose = visualize_hand(keypts, masked_img)
|
|
|
436 |
else:
|
437 |
hand_mask = np.zeros_like(img[:,:, 0])
|
438 |
ref_pose = np.zeros_like(img)
|
439 |
+
print(f"keypts.max(): {keypts.max()}, keypts.min(): {keypts.min()}")
|
440 |
|
441 |
+
def make_ref_cond(
|
442 |
+
img,
|
443 |
+
keypts,
|
444 |
+
hand_mask,
|
445 |
+
device="cuda",
|
446 |
+
target_size=(256, 256),
|
447 |
+
latent_size=(32, 32),
|
448 |
+
):
|
449 |
+
image_transform = Compose(
|
450 |
+
[
|
451 |
+
ToTensor(),
|
452 |
+
Resize(target_size),
|
453 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
454 |
+
]
|
455 |
)
|
456 |
+
image = image_transform(img)
|
457 |
+
kpts_valid = check_keypoints_validity(keypts, target_size)
|
458 |
+
heatmaps = torch.tensor(
|
459 |
+
keypoint_heatmap(
|
460 |
+
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
|
461 |
+
)
|
462 |
+
* kpts_valid[:, None, None],
|
463 |
+
dtype=torch.float,
|
464 |
+
)[None, ...]
|
465 |
+
mask = torch.tensor(
|
466 |
+
cv2.resize(
|
467 |
+
hand_mask.astype(int),
|
468 |
+
dsize=latent_size,
|
469 |
+
interpolation=cv2.INTER_NEAREST,
|
470 |
+
),
|
471 |
+
dtype=torch.float,
|
472 |
+
).unsqueeze(0)[None, ...]
|
473 |
+
return image[None, ...], heatmaps, mask
|
|
|
|
|
|
|
|
|
474 |
|
475 |
+
print(f"img.max(): {img.max()}, img.min(): {img.min()}")
|
476 |
+
image, heatmaps, mask = make_ref_cond(
|
477 |
+
img,
|
478 |
+
keypts,
|
479 |
+
hand_mask,
|
480 |
+
device="cuda",
|
481 |
+
target_size=opts.image_size,
|
482 |
+
latent_size=opts.latent_size,
|
483 |
+
)
|
484 |
+
print(f"image.max(): {image.max()}, image.min(): {image.min()}")
|
485 |
+
print(f"opts.latent_scaling_factor: {opts.latent_scaling_factor}")
|
486 |
+
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
|
487 |
+
print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}")
|
488 |
if not REF_POSE_MASK:
|
489 |
heatmaps = torch.zeros_like(heatmaps)
|
490 |
mask = torch.zeros_like(mask)
|
491 |
+
print(f"heatmaps.max(): {heatmaps.max()}, heatmaps.min(): {heatmaps.min()}")
|
492 |
+
print(f"mask.max(): {mask.max()}, mask.min(): {mask.min()}")
|
493 |
ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
494 |
+
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
|
495 |
|
496 |
return img, ref_pose, ref_cond
|
497 |
|