quincyqiang commited on
Commit
08afbac
·
1 Parent(s): b549679

update@web_demo

Browse files
README.md CHANGED
@@ -11,8 +11,9 @@
11
 
12
  ## 🚀 特性
13
 
14
- - 🚀 2023/04/19 增加web search功能,需要确保网络畅通!
15
- - 🚀 2023/04/18 webui增加知识库选择功能
 
16
  - 🚀 2023/04/18 修复推理预测超时5s报错问题
17
  - 🎉 2023/04/17 支持多种文档上传与内容解析:pdf、docx,ppt等
18
  - 🎉 2023/04/17 支持知识增量更新
 
11
 
12
  ## 🚀 特性
13
 
14
+ - 🐯 2023/04/19 引入ChuanhuChatGPT皮肤
15
+ - 📱 2023/04/19 增加web search功能,需要确保网络畅通!
16
+ - 📚 2023/04/18 webui增加知识库选择功能
17
  - 🚀 2023/04/18 修复推理预测超时5s报错问题
18
  - 🎉 2023/04/17 支持多种文档上传与内容解析:pdf、docx,ppt等
19
  - 🎉 2023/04/17 支持知识增量更新
app_modules/__pycache__/presets.cpython-310.pyc ADDED
Binary file (2.26 kB). View file
 
app_modules/__pycache__/presets.cpython-39.pyc ADDED
Binary file (2.26 kB). View file
 
app_modules/overwrites.py CHANGED
@@ -1,25 +1,12 @@
1
  from __future__ import annotations
2
- import logging
3
 
4
- from llama_index import Prompt
5
  from typing import List, Tuple
6
- import mdtex2html
7
 
8
- from app_modules.presets import *
9
  from app_modules.utils import *
10
 
11
- def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
12
- logging.debug("Compacting text chunks...🚀🚀🚀")
13
- combined_str = [c.strip() for c in text_chunks if c.strip()]
14
- combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
15
- combined_str = "\n\n".join(combined_str)
16
- # resplit based on self.max_chunk_overlap
17
- text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
18
- return text_splitter.split_text(combined_str)
19
-
20
 
21
  def postprocess(
22
- self, y: List[Tuple[str | None, str | None]]
23
  ) -> List[Tuple[str | None, str | None]]:
24
  """
25
  Parameters:
@@ -39,13 +26,17 @@ def postprocess(
39
  temp.append((user, bot))
40
  return temp
41
 
42
- with open("./assets/custom.js", "r", encoding="utf-8") as f, open("./assets/Kelpy-Codos.js", "r", encoding="utf-8") as f2:
 
 
43
  customJS = f.read()
44
  kelpyCodos = f2.read()
45
 
 
46
  def reload_javascript():
47
  print("Reloading javascript...")
48
  js = f'<script>{customJS}</script><script>{kelpyCodos}</script>'
 
49
  def template_response(*args, **kwargs):
50
  res = GradioTemplateResponseOriginal(*args, **kwargs)
51
  res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
@@ -54,4 +45,5 @@ def reload_javascript():
54
 
55
  gr.routes.templates.TemplateResponse = template_response
56
 
 
57
  GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse
 
1
  from __future__ import annotations
 
2
 
 
3
  from typing import List, Tuple
 
4
 
 
5
  from app_modules.utils import *
6
 
 
 
 
 
 
 
 
 
 
7
 
8
  def postprocess(
9
+ self, y: List[Tuple[str | None, str | None]]
10
  ) -> List[Tuple[str | None, str | None]]:
11
  """
12
  Parameters:
 
26
  temp.append((user, bot))
27
  return temp
28
 
29
+
30
+ with open("./assets/custom.js", "r", encoding="utf-8") as f, open("./assets/Kelpy-Codos.js", "r",
31
+ encoding="utf-8") as f2:
32
  customJS = f.read()
33
  kelpyCodos = f2.read()
34
 
35
+
36
  def reload_javascript():
37
  print("Reloading javascript...")
38
  js = f'<script>{customJS}</script><script>{kelpyCodos}</script>'
39
+
40
  def template_response(*args, **kwargs):
41
  res = GradioTemplateResponseOriginal(*args, **kwargs)
42
  res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
 
45
 
46
  gr.routes.templates.TemplateResponse = template_response
47
 
48
+
49
  GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse
app_modules/utils.py CHANGED
@@ -1,32 +1,16 @@
1
  # -*- coding:utf-8 -*-
2
  from __future__ import annotations
3
- from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
 
4
  import logging
5
- import json
6
- import os
7
- import datetime
8
- import hashlib
9
- import csv
10
- import requests
11
  import re
12
- import html
13
- import markdown2
14
- import torch
15
- import sys
16
- import gc
17
- from pygments.lexers import guess_lexer, ClassNotFound
18
-
19
- import gradio as gr
20
- from pypinyin import lazy_pinyin
21
- import tiktoken
22
  import mdtex2html
23
  from markdown import markdown
24
  from pygments import highlight
25
- from pygments.lexers import guess_lexer, get_lexer_by_name
26
  from pygments.formatters import HtmlFormatter
27
- import transformers
28
- from peft import PeftModel
29
- from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
30
 
31
  from app_modules.presets import *
32
 
@@ -241,142 +225,3 @@ class State:
241
 
242
 
243
  shared_state = State()
244
-
245
-
246
- # Greedy Search
247
- def greedy_search(input_ids: torch.Tensor,
248
- model: torch.nn.Module,
249
- tokenizer: transformers.PreTrainedTokenizer,
250
- stop_words: list,
251
- max_length: int,
252
- temperature: float = 1.0,
253
- top_p: float = 1.0,
254
- top_k: int = 25) -> Iterator[str]:
255
- generated_tokens = []
256
- past_key_values = None
257
- current_length = 1
258
- for i in range(max_length):
259
- with torch.no_grad():
260
- if past_key_values is None:
261
- outputs = model(input_ids)
262
- else:
263
- outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
264
- logits = outputs.logits[:, -1, :]
265
- past_key_values = outputs.past_key_values
266
-
267
- # apply temperature
268
- logits /= temperature
269
-
270
- probs = torch.softmax(logits, dim=-1)
271
- # apply top_p
272
- probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
273
- probs_sum = torch.cumsum(probs_sort, dim=-1)
274
- mask = probs_sum - probs_sort > top_p
275
- probs_sort[mask] = 0.0
276
-
277
- # apply top_k
278
- # if top_k is not None:
279
- # probs_sort1, _ = torch.topk(probs_sort, top_k)
280
- # min_top_probs_sort = torch.min(probs_sort1, dim=-1, keepdim=True).values
281
- # probs_sort = torch.where(probs_sort < min_top_probs_sort, torch.full_like(probs_sort, float(0.0)), probs_sort)
282
-
283
- probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
284
- next_token = torch.multinomial(probs_sort, num_samples=1)
285
- next_token = torch.gather(probs_idx, -1, next_token)
286
-
287
- input_ids = torch.cat((input_ids, next_token), dim=-1)
288
-
289
- generated_tokens.append(next_token[0].item())
290
- text = tokenizer.decode(generated_tokens)
291
-
292
- yield text
293
- if any([x in text for x in stop_words]):
294
- del past_key_values
295
- del logits
296
- del probs
297
- del probs_sort
298
- del probs_idx
299
- del probs_sum
300
- gc.collect()
301
- return
302
-
303
-
304
- def generate_prompt_with_history(text, history, tokenizer, max_length=2048):
305
- prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
306
- history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0], x[1]) for x in history]
307
- history.append("\n[|Human|]{}\n[|AI|]".format(text))
308
- history_text = ""
309
- flag = False
310
- for x in history[::-1]:
311
- if tokenizer(prompt + history_text + x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
312
- history_text = x + history_text
313
- flag = True
314
- else:
315
- break
316
- if flag:
317
- return prompt + history_text, tokenizer(prompt + history_text, return_tensors="pt")
318
- else:
319
- return None
320
-
321
-
322
- def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
323
- for stop_word in stop_words:
324
- if s.endswith(stop_word):
325
- return True
326
- for i in range(1, len(stop_word)):
327
- if s.endswith(stop_word[:i]):
328
- return True
329
- return False
330
-
331
-
332
- def load_tokenizer_and_model(base_model, adapter_model, load_8bit=False):
333
- if torch.cuda.is_available():
334
- device = "cuda"
335
- else:
336
- device = "cpu"
337
-
338
- try:
339
- if torch.backends.mps.is_available():
340
- device = "mps"
341
- except: # noqa: E722
342
- pass
343
- tokenizer = LlamaTokenizer.from_pretrained(base_model)
344
- if device == "cuda":
345
- model = LlamaForCausalLM.from_pretrained(
346
- base_model,
347
- load_in_8bit=load_8bit,
348
- torch_dtype=torch.float16,
349
- device_map="auto",
350
- )
351
- model = PeftModel.from_pretrained(
352
- model,
353
- adapter_model,
354
- torch_dtype=torch.float16,
355
- )
356
- elif device == "mps":
357
- model = LlamaForCausalLM.from_pretrained(
358
- base_model,
359
- device_map={"": device},
360
- torch_dtype=torch.float16,
361
- )
362
- model = PeftModel.from_pretrained(
363
- model,
364
- adapter_model,
365
- device_map={"": device},
366
- torch_dtype=torch.float16,
367
- )
368
- else:
369
- model = LlamaForCausalLM.from_pretrained(
370
- base_model, device_map={"": device}, low_cpu_mem_usage=True
371
- )
372
- model = PeftModel.from_pretrained(
373
- model,
374
- adapter_model,
375
- device_map={"": device},
376
- )
377
-
378
- if not load_8bit:
379
- model.half() # seems to fix bugs for some users.
380
-
381
- model.eval()
382
- return tokenizer, model, device
 
1
  # -*- coding:utf-8 -*-
2
  from __future__ import annotations
3
+
4
+ import html
5
  import logging
 
 
 
 
 
 
6
  import re
7
+
 
 
 
 
 
 
 
 
 
8
  import mdtex2html
9
  from markdown import markdown
10
  from pygments import highlight
 
11
  from pygments.formatters import HtmlFormatter
12
+ from pygments.lexers import ClassNotFound
13
+ from pygments.lexers import guess_lexer, get_lexer_by_name
 
14
 
15
  from app_modules.presets import *
16
 
 
225
 
226
 
227
  shared_state = State()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
clc/__pycache__/langchain_application.cpython-39.pyc CHANGED
Binary files a/clc/__pycache__/langchain_application.cpython-39.pyc and b/clc/__pycache__/langchain_application.cpython-39.pyc differ
 
clc/__pycache__/source_service.cpython-310.pyc CHANGED
Binary files a/clc/__pycache__/source_service.cpython-310.pyc and b/clc/__pycache__/source_service.cpython-310.pyc differ
 
clc/__pycache__/source_service.cpython-39.pyc CHANGED
Binary files a/clc/__pycache__/source_service.cpython-39.pyc and b/clc/__pycache__/source_service.cpython-39.pyc differ
 
images/web_demo_new.png CHANGED
main.py CHANGED
@@ -1,7 +1,6 @@
1
  import os
2
  import shutil
3
 
4
- import gradio as gr
5
  from app_modules.presets import *
6
  from clc.langchain_application import LangChainApplication
7
 
@@ -93,6 +92,7 @@ def predict(input,
93
  search_text += web_content
94
  return '', history, history, search_text
95
 
 
96
  with open("assets/custom.css", "r", encoding="utf-8") as f:
97
  customCSS = f.read()
98
  with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
@@ -147,14 +147,20 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
147
  outputs=None)
148
  with gr.Column(scale=4):
149
  with gr.Row():
150
- with gr.Column(scale=4):
151
- chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
152
- message = gr.Textbox(label='请输入问题')
153
- with gr.Row():
154
- clear_history = gr.Button("🧹 清除历史对话")
155
- send = gr.Button("🚀 发送")
156
- with gr.Column(scale=2):
157
- search = gr.Textbox(label='搜索结果')
 
 
 
 
 
 
158
  set_kg_btn.click(
159
  set_knowledge,
160
  show_progress=True,
@@ -185,10 +191,7 @@ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
185
  state
186
  ],
187
  outputs=[message, chatbot, state, search])
188
- gr.Markdown("""提醒:<br>
189
- [Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) <br>
190
- 有任何使用问题[Github Issue区](https://github.com/yanqiangmiffy/Chinese-LangChain)进行反馈. <br>
191
- """)
192
  demo.queue(concurrency_count=2).launch(
193
  server_name='0.0.0.0',
194
  server_port=8888,
 
1
  import os
2
  import shutil
3
 
 
4
  from app_modules.presets import *
5
  from clc.langchain_application import LangChainApplication
6
 
 
92
  search_text += web_content
93
  return '', history, history, search_text
94
 
95
+
96
  with open("assets/custom.css", "r", encoding="utf-8") as f:
97
  customCSS = f.read()
98
  with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
 
147
  outputs=None)
148
  with gr.Column(scale=4):
149
  with gr.Row():
150
+ chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
151
+ with gr.Row():
152
+ message = gr.Textbox(label='请输入问题')
153
+ with gr.Row():
154
+ clear_history = gr.Button("🧹 清除历史对话")
155
+ send = gr.Button("🚀 发送")
156
+ with gr.Row():
157
+ gr.Markdown("""提醒:<br>
158
+ [Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) <br>
159
+ 有任何使用问题[Github Issue区](https://github.com/yanqiangmiffy/Chinese-LangChain)进行反馈. <br>
160
+ """)
161
+ with gr.Column(scale=2):
162
+ search = gr.Textbox(label='搜索结果')
163
+
164
  set_kg_btn.click(
165
  set_knowledge,
166
  show_progress=True,
 
191
  state
192
  ],
193
  outputs=[message, chatbot, state, search])
194
+
 
 
 
195
  demo.queue(concurrency_count=2).launch(
196
  server_name='0.0.0.0',
197
  server_port=8888,
requirements.txt CHANGED
@@ -4,4 +4,7 @@ transformers
4
  sentence_transformers
5
  faiss-cpu
6
  unstructured
7
- duckduckgo_search
 
 
 
 
4
  sentence_transformers
5
  faiss-cpu
6
  unstructured
7
+ duckduckgo_search
8
+ mdtex2html
9
+ chardet
10
+ cchardet