Chan-Y's picture
Update app.py
77ee49c verified
from diffusers import DiffusionPipeline
import gradio as gr
import numpy as np
import random
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
pipe = DiffusionPipeline.from_pretrained("Chan-Y/Cyber-Stable-Realistic",
torch_dtype=torch.float16).to(device)
MAX_SEED = 999999999999999
MAX_IMAGE_SIZE = 1344
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed
examples = [
["Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.",
"",
12345,
50]
]
css = """
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Demo [Chan-Y/Stable-Flash-Lightning](https://huggingface.co/Chan-Y/Chan-Y-Cyber-Stable-Realistic)
by Cihan Yalçın | My [LinkedIn](https://www.linkedin.com/in/chanyalcin/) My [GitHub](https://github.com/g-hano)
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=examples,
inputs=[prompt, negative_prompt, seed, num_inference_steps]
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()