ChancesYuan's picture
Update app.py
165a887 verified
import gradio as gr
from transformers import AutoProcessor, BarkModel
import scipy
import numpy as np
# Load the processor and model
processor = AutoProcessor.from_pretrained("suno/bark")
model = BarkModel.from_pretrained("suno/bark")
def generate_audio(text):
# Your preset may vary
voice_preset = "v2/en_speaker_6"
inputs = processor(text, voice_preset=voice_preset)
audio_array = model.generate(**inputs)
# Move the tensor to CPU and convert to numpy array
audio_array = audio_array.cpu().numpy().squeeze()
sample_rate = model.generation_config.sample_rate
# Saving the audio file temporarily
output_file = '/tmp/bark_out.wav'
scipy.io.wavfile.write(output_file, rate=sample_rate, data=audio_array)
# Return the path to the saved audio file
return output_file
# Define the Gradio interface
iface = gr.Interface(
fn=generate_audio,
inputs="text",
outputs="audio",
examples=[["Hello, my dog is cute"]],
allow_flagging="never"
)
# Launch the interface
iface.launch()