import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate def get_conversational_chain(): prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "Sorry, I don't know about this. You can ask anther question.", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain( {"input_documents":docs, "question": user_question} , return_only_outputs=True) print(response) st.write("Reply: ", response["output_text"]) st.set_page_config("DIAT Rakshak") st.header("DIAT Assistant Chatbot") GOOGLE_API_KEY = st.text_input("Please enter your GOOGLE_API_KEY") os.environ['GOOGLE_API_KEY'] = GOOGLE_API_KEY user_question = st.text_input("Hello! I am Rakshak, your DIAT assistant. Please ask your query regarding DIAT.") if user_question: user_input(user_question)