import os import time import openai import requests import schedule from rich import print # Load environment variables OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") OPENAI_BASE_URL = os.getenv("OPENAI_BASE_URL", "https://api.helpingai.co/v1") if not OPENAI_API_KEY: raise ValueError("OPENAI_API_KEY must be set in .env file") # Initialize OpenAI client client = openai.OpenAI( api_key=OPENAI_API_KEY, base_url=OPENAI_BASE_URL ) # Hardcoded list of models MODELS = [ "HelpingAI2.5-10B", "HelpingAI2.5-2B", "HelpingAI2.5-5B", "HelpingAI-flash", "HelpingAI2-9B", "HelpingAI2-6B", "HelpingAI-15B", "HELVETE", "HELVETE-X", "Priya-3B", "HelpingAI2.5-10B-1M", "Cipher-20B", "HelpingAI2-3B" ] # Function to make a request to a model with retry mechanism def make_request(model_name): max_retries = 3 retry_delay = 10 # seconds for attempt in range(max_retries): try: print(f"Requesting model: {model_name}") response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": "Hello, how are you?"}] ) print(f"Response from {model_name}: {response.choices[0].message.content}\n") break # Break if successful except Exception as e: print(f"Error with model {model_name}: {e}") if attempt < max_retries - 1: print(f"Retrying in {retry_delay} seconds...") time.sleep(retry_delay) else: print("Max retries reached. Could not get a response.") def job(): for model in MODELS: make_request(model) if __name__ == "__main__": schedule.every(5).minutes.do(job) while True: schedule.run_pending() time.sleep(1)