tools3ox_api / app.py
CharlieAmalet's picture
Update app.py
b772fd8 verified
import torch
torch.jit.script = lambda f: f
import gradio as gr
import spaces
from zoedepth.utils.misc import colorize, save_raw_16bit
from zoedepth.utils.geometry import depth_to_points, create_triangles
from marigold_depth_estimation import MarigoldPipeline
from PIL import Image
import numpy as np
import trimesh
from functools import partial
import tempfile
css = """
img {
max-height: 500px;
object-fit: contain;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval()
CHECKPOINT = "prs-eth/marigold-v1-0"
pipe = MarigoldPipeline.from_pretrained(CHECKPOINT)
# ----------- Depth functions
@spaces.GPU(enable_queue=True)
def save_raw_16bit(depth, fpath="raw.png"):
if isinstance(depth, torch.Tensor):
depth = depth.squeeze().cpu().numpy()
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
assert depth.ndim == 2, "Depth must be 2D"
depth = depth * 256 # scale for 16-bit png
depth = depth.astype(np.uint16)
return depth
@spaces.GPU(enable_queue=True)
def process_image(image: Image.Image):
global model
image = image.convert("RGB")
# model.to(DEVICE)
depth = model.infer_pil(image)
processed_array = save_raw_16bit(colorize(depth)[:, :, 0])
return Image.fromarray(processed_array)
# model.to(device)
# processed_array = pipe(image)["depth"]
# return Image.fromarray(processed_array)
# ----------- Depth functions
# ----------- Mesh functions
@spaces.GPU(enable_queue=True)
def depth_edges_mask(depth):
global model
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
@spaces.GPU(enable_queue=True)
def predict_depth(image):
global model
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
depth = model.infer_pil(image)
return depth
@spaces.GPU(enable_queue=True)
def get_mesh(image: Image.Image, keep_edges=True):
image.thumbnail((1024,1024)) # limit the size of the input image
depth = predict_depth(image)
pts3d = depth_to_points(depth[None])
pts3d = pts3d.reshape(-1, 3)
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
verts = pts3d.reshape(-1, 3)
image = np.array(image)
if keep_edges:
triangles = create_triangles(image.shape[0], image.shape[1])
else:
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))
colors = image.reshape(-1, 3)
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
glb_path = glb_file.name
mesh.export(glb_path)
return glb_path
# ----------- Mesh functions
title = "# ZoeDepth"
description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**."""
with gr.Blocks(css=css) as API:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("Depth Prediction"):
with gr.Row():
inputs=gr.Image(label="Input Image", type='pil', height=500) # Input is an image
outputs=gr.Image(label="Depth Map", type='pil', height=500) # Output is also an image
generate_btn = gr.Button(value="Generate")
# generate_btn.click(partial(process_image, model), inputs=inputs, outputs=outputs, api_name="generate_depth")
generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth")
with gr.Tab("Image to 3D"):
with gr.Row():
with gr.Column():
inputs=[gr.Image(label="Input Image", type='pil', height=500), gr.Checkbox(label="Keep occlusion edges", value=True)]
outputs=gr.Model3D(label="3D Mesh", clear_color=[1.0, 1.0, 1.0, 1.0], height=500)
generate_btn = gr.Button(value="Generate")
# generate_btn.click(partial(get_mesh, model), inputs=inputs, outputs=outputs, api_name="generate_mesh")
generate_btn.click(get_mesh, inputs=inputs, outputs=outputs, api_name="generate_mesh")
if __name__ == '__main__':
API.launch()