Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
torch.jit.script = lambda f: f | |
import gradio as gr | |
import spaces | |
from zoedepth.utils.misc import colorize, save_raw_16bit | |
from zoedepth.utils.geometry import depth_to_points, create_triangles | |
from marigold_depth_estimation import MarigoldPipeline | |
from PIL import Image | |
import numpy as np | |
import trimesh | |
from functools import partial | |
import tempfile | |
css = """ | |
img { | |
max-height: 500px; | |
object-fit: contain; | |
} | |
""" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval() | |
CHECKPOINT = "prs-eth/marigold-v1-0" | |
pipe = MarigoldPipeline.from_pretrained(CHECKPOINT) | |
# ----------- Depth functions | |
def save_raw_16bit(depth, fpath="raw.png"): | |
if isinstance(depth, torch.Tensor): | |
depth = depth.squeeze().cpu().numpy() | |
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array" | |
assert depth.ndim == 2, "Depth must be 2D" | |
depth = depth * 256 # scale for 16-bit png | |
depth = depth.astype(np.uint16) | |
return depth | |
def process_image(image: Image.Image): | |
global model | |
image = image.convert("RGB") | |
# model.to(DEVICE) | |
depth = model.infer_pil(image) | |
processed_array = save_raw_16bit(colorize(depth)[:, :, 0]) | |
return Image.fromarray(processed_array) | |
# model.to(device) | |
# processed_array = pipe(image)["depth"] | |
# return Image.fromarray(processed_array) | |
# ----------- Depth functions | |
# ----------- Mesh functions | |
def depth_edges_mask(depth): | |
global model | |
"""Returns a mask of edges in the depth map. | |
Args: | |
depth: 2D numpy array of shape (H, W) with dtype float32. | |
Returns: | |
mask: 2D numpy array of shape (H, W) with dtype bool. | |
""" | |
# Compute the x and y gradients of the depth map. | |
depth_dx, depth_dy = np.gradient(depth) | |
# Compute the gradient magnitude. | |
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2) | |
# Compute the edge mask. | |
mask = depth_grad > 0.05 | |
return mask | |
def predict_depth(image): | |
global model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
depth = model.infer_pil(image) | |
return depth | |
def get_mesh(image: Image.Image, keep_edges=True): | |
image.thumbnail((1024,1024)) # limit the size of the input image | |
depth = predict_depth(image) | |
pts3d = depth_to_points(depth[None]) | |
pts3d = pts3d.reshape(-1, 3) | |
# Create a trimesh mesh from the points | |
# Each pixel is connected to its 4 neighbors | |
# colors are the RGB values of the image | |
verts = pts3d.reshape(-1, 3) | |
image = np.array(image) | |
if keep_edges: | |
triangles = create_triangles(image.shape[0], image.shape[1]) | |
else: | |
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth)) | |
colors = image.reshape(-1, 3) | |
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors) | |
# Save as glb | |
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
glb_path = glb_file.name | |
mesh.export(glb_path) | |
return glb_path | |
# ----------- Mesh functions | |
title = "# ZoeDepth" | |
description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**.""" | |
with gr.Blocks(css=css) as API: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tab("Depth Prediction"): | |
with gr.Row(): | |
inputs=gr.Image(label="Input Image", type='pil', height=500) # Input is an image | |
outputs=gr.Image(label="Depth Map", type='pil', height=500) # Output is also an image | |
generate_btn = gr.Button(value="Generate") | |
# generate_btn.click(partial(process_image, model), inputs=inputs, outputs=outputs, api_name="generate_depth") | |
generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth") | |
with gr.Tab("Image to 3D"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs=[gr.Image(label="Input Image", type='pil', height=500), gr.Checkbox(label="Keep occlusion edges", value=True)] | |
outputs=gr.Model3D(label="3D Mesh", clear_color=[1.0, 1.0, 1.0, 1.0], height=500) | |
generate_btn = gr.Button(value="Generate") | |
# generate_btn.click(partial(get_mesh, model), inputs=inputs, outputs=outputs, api_name="generate_mesh") | |
generate_btn.click(get_mesh, inputs=inputs, outputs=outputs, api_name="generate_mesh") | |
if __name__ == '__main__': | |
API.launch() |