Spaces:
Running
on
Zero
Running
on
Zero
Charlie Amalet
commited on
Commit
·
0b808ab
1
Parent(s):
ae4bd74
Upload Zoedepth folder
Browse files- zoedepth/data/__init__.py +24 -0
- zoedepth/data/data_mono.py +573 -0
- zoedepth/data/ddad.py +117 -0
- zoedepth/data/diml_indoor_test.py +125 -0
- zoedepth/data/diml_outdoor_test.py +114 -0
- zoedepth/data/diode.py +125 -0
- zoedepth/data/hypersim.py +138 -0
- zoedepth/data/ibims.py +81 -0
- zoedepth/data/preprocess.py +154 -0
- zoedepth/data/sun_rgbd_loader.py +106 -0
- zoedepth/data/transforms.py +481 -0
- zoedepth/data/vkitti.py +151 -0
- zoedepth/data/vkitti2.py +187 -0
- zoedepth/models/__init__.py +24 -0
- zoedepth/models/base_models/__init__.py +24 -0
- zoedepth/models/base_models/midas.py +377 -0
- zoedepth/models/builder.py +51 -0
- zoedepth/models/depth_model.py +152 -0
- zoedepth/models/layers/attractor.py +208 -0
- zoedepth/models/layers/dist_layers.py +121 -0
- zoedepth/models/layers/localbins_layers.py +169 -0
- zoedepth/models/layers/patch_transformer.py +91 -0
- zoedepth/models/model_io.py +92 -0
- zoedepth/models/zoedepth/__init__.py +31 -0
- zoedepth/models/zoedepth/config_zoedepth.json +58 -0
- zoedepth/models/zoedepth/config_zoedepth_kitti.json +22 -0
- zoedepth/models/zoedepth/zoedepth_v1.py +250 -0
- zoedepth/models/zoedepth_nk/__init__.py +31 -0
- zoedepth/models/zoedepth_nk/config_zoedepth_nk.json +67 -0
- zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py +333 -0
- zoedepth/trainers/base_trainer.py +326 -0
- zoedepth/trainers/builder.py +48 -0
- zoedepth/trainers/loss.py +316 -0
- zoedepth/trainers/zoedepth_nk_trainer.py +143 -0
- zoedepth/trainers/zoedepth_trainer.py +177 -0
- zoedepth/utils/__init__.py +24 -0
- zoedepth/utils/arg_utils.py +33 -0
- zoedepth/utils/config.py +437 -0
- zoedepth/utils/easydict/__init__.py +158 -0
- zoedepth/utils/geometry.py +98 -0
- zoedepth/utils/misc.py +368 -0
zoedepth/data/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
zoedepth/data/data_mono.py
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
# This file is partly inspired from BTS (https://github.com/cleinc/bts/blob/master/pytorch/bts_dataloader.py); author: Jin Han Lee
|
26 |
+
|
27 |
+
import itertools
|
28 |
+
import os
|
29 |
+
import random
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
import cv2
|
33 |
+
import torch
|
34 |
+
import torch.nn as nn
|
35 |
+
import torch.utils.data.distributed
|
36 |
+
from zoedepth.utils.easydict import EasyDict as edict
|
37 |
+
from PIL import Image, ImageOps
|
38 |
+
from torch.utils.data import DataLoader, Dataset
|
39 |
+
from torchvision import transforms
|
40 |
+
|
41 |
+
from zoedepth.utils.config import change_dataset
|
42 |
+
|
43 |
+
from .ddad import get_ddad_loader
|
44 |
+
from .diml_indoor_test import get_diml_indoor_loader
|
45 |
+
from .diml_outdoor_test import get_diml_outdoor_loader
|
46 |
+
from .diode import get_diode_loader
|
47 |
+
from .hypersim import get_hypersim_loader
|
48 |
+
from .ibims import get_ibims_loader
|
49 |
+
from .sun_rgbd_loader import get_sunrgbd_loader
|
50 |
+
from .vkitti import get_vkitti_loader
|
51 |
+
from .vkitti2 import get_vkitti2_loader
|
52 |
+
|
53 |
+
from .preprocess import CropParams, get_white_border, get_black_border
|
54 |
+
|
55 |
+
|
56 |
+
def _is_pil_image(img):
|
57 |
+
return isinstance(img, Image.Image)
|
58 |
+
|
59 |
+
|
60 |
+
def _is_numpy_image(img):
|
61 |
+
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
|
62 |
+
|
63 |
+
|
64 |
+
def preprocessing_transforms(mode, **kwargs):
|
65 |
+
return transforms.Compose([
|
66 |
+
ToTensor(mode=mode, **kwargs)
|
67 |
+
])
|
68 |
+
|
69 |
+
|
70 |
+
class DepthDataLoader(object):
|
71 |
+
def __init__(self, config, mode, device='cpu', transform=None, **kwargs):
|
72 |
+
"""
|
73 |
+
Data loader for depth datasets
|
74 |
+
|
75 |
+
Args:
|
76 |
+
config (dict): Config dictionary. Refer to utils/config.py
|
77 |
+
mode (str): "train" or "online_eval"
|
78 |
+
device (str, optional): Device to load the data on. Defaults to 'cpu'.
|
79 |
+
transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None.
|
80 |
+
"""
|
81 |
+
|
82 |
+
self.config = config
|
83 |
+
|
84 |
+
if config.dataset == 'ibims':
|
85 |
+
self.data = get_ibims_loader(config, batch_size=1, num_workers=1)
|
86 |
+
return
|
87 |
+
|
88 |
+
if config.dataset == 'sunrgbd':
|
89 |
+
self.data = get_sunrgbd_loader(
|
90 |
+
data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1)
|
91 |
+
return
|
92 |
+
|
93 |
+
if config.dataset == 'diml_indoor':
|
94 |
+
self.data = get_diml_indoor_loader(
|
95 |
+
data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1)
|
96 |
+
return
|
97 |
+
|
98 |
+
if config.dataset == 'diml_outdoor':
|
99 |
+
self.data = get_diml_outdoor_loader(
|
100 |
+
data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1)
|
101 |
+
return
|
102 |
+
|
103 |
+
if "diode" in config.dataset:
|
104 |
+
self.data = get_diode_loader(
|
105 |
+
config[config.dataset+"_root"], batch_size=1, num_workers=1)
|
106 |
+
return
|
107 |
+
|
108 |
+
if config.dataset == 'hypersim_test':
|
109 |
+
self.data = get_hypersim_loader(
|
110 |
+
config.hypersim_test_root, batch_size=1, num_workers=1)
|
111 |
+
return
|
112 |
+
|
113 |
+
if config.dataset == 'vkitti':
|
114 |
+
self.data = get_vkitti_loader(
|
115 |
+
config.vkitti_root, batch_size=1, num_workers=1)
|
116 |
+
return
|
117 |
+
|
118 |
+
if config.dataset == 'vkitti2':
|
119 |
+
self.data = get_vkitti2_loader(
|
120 |
+
config.vkitti2_root, batch_size=1, num_workers=1)
|
121 |
+
return
|
122 |
+
|
123 |
+
if config.dataset == 'ddad':
|
124 |
+
self.data = get_ddad_loader(config.ddad_root, resize_shape=(
|
125 |
+
352, 1216), batch_size=1, num_workers=1)
|
126 |
+
return
|
127 |
+
|
128 |
+
img_size = self.config.get("img_size", None)
|
129 |
+
img_size = img_size if self.config.get(
|
130 |
+
"do_input_resize", False) else None
|
131 |
+
|
132 |
+
if transform is None:
|
133 |
+
transform = preprocessing_transforms(mode, size=img_size)
|
134 |
+
|
135 |
+
if mode == 'train':
|
136 |
+
|
137 |
+
Dataset = DataLoadPreprocess
|
138 |
+
self.training_samples = Dataset(
|
139 |
+
config, mode, transform=transform, device=device)
|
140 |
+
|
141 |
+
if config.distributed:
|
142 |
+
self.train_sampler = torch.utils.data.distributed.DistributedSampler(
|
143 |
+
self.training_samples)
|
144 |
+
else:
|
145 |
+
self.train_sampler = None
|
146 |
+
|
147 |
+
self.data = DataLoader(self.training_samples,
|
148 |
+
batch_size=config.batch_size,
|
149 |
+
shuffle=(self.train_sampler is None),
|
150 |
+
num_workers=config.workers,
|
151 |
+
pin_memory=True,
|
152 |
+
persistent_workers=True,
|
153 |
+
# prefetch_factor=2,
|
154 |
+
sampler=self.train_sampler)
|
155 |
+
|
156 |
+
elif mode == 'online_eval':
|
157 |
+
self.testing_samples = DataLoadPreprocess(
|
158 |
+
config, mode, transform=transform)
|
159 |
+
if config.distributed: # redundant. here only for readability and to be more explicit
|
160 |
+
# Give whole test set to all processes (and report evaluation only on one) regardless
|
161 |
+
self.eval_sampler = None
|
162 |
+
else:
|
163 |
+
self.eval_sampler = None
|
164 |
+
self.data = DataLoader(self.testing_samples, 1,
|
165 |
+
shuffle=kwargs.get("shuffle_test", False),
|
166 |
+
num_workers=1,
|
167 |
+
pin_memory=False,
|
168 |
+
sampler=self.eval_sampler)
|
169 |
+
|
170 |
+
elif mode == 'test':
|
171 |
+
self.testing_samples = DataLoadPreprocess(
|
172 |
+
config, mode, transform=transform)
|
173 |
+
self.data = DataLoader(self.testing_samples,
|
174 |
+
1, shuffle=False, num_workers=1)
|
175 |
+
|
176 |
+
else:
|
177 |
+
print(
|
178 |
+
'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
|
179 |
+
|
180 |
+
|
181 |
+
def repetitive_roundrobin(*iterables):
|
182 |
+
"""
|
183 |
+
cycles through iterables but sample wise
|
184 |
+
first yield first sample from first iterable then first sample from second iterable and so on
|
185 |
+
then second sample from first iterable then second sample from second iterable and so on
|
186 |
+
|
187 |
+
If one iterable is shorter than the others, it is repeated until all iterables are exhausted
|
188 |
+
repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E
|
189 |
+
"""
|
190 |
+
# Repetitive roundrobin
|
191 |
+
iterables_ = [iter(it) for it in iterables]
|
192 |
+
exhausted = [False] * len(iterables)
|
193 |
+
while not all(exhausted):
|
194 |
+
for i, it in enumerate(iterables_):
|
195 |
+
try:
|
196 |
+
yield next(it)
|
197 |
+
except StopIteration:
|
198 |
+
exhausted[i] = True
|
199 |
+
iterables_[i] = itertools.cycle(iterables[i])
|
200 |
+
# First elements may get repeated if one iterable is shorter than the others
|
201 |
+
yield next(iterables_[i])
|
202 |
+
|
203 |
+
|
204 |
+
class RepetitiveRoundRobinDataLoader(object):
|
205 |
+
def __init__(self, *dataloaders):
|
206 |
+
self.dataloaders = dataloaders
|
207 |
+
|
208 |
+
def __iter__(self):
|
209 |
+
return repetitive_roundrobin(*self.dataloaders)
|
210 |
+
|
211 |
+
def __len__(self):
|
212 |
+
# First samples get repeated, thats why the plus one
|
213 |
+
return len(self.dataloaders) * (max(len(dl) for dl in self.dataloaders) + 1)
|
214 |
+
|
215 |
+
|
216 |
+
class MixedNYUKITTI(object):
|
217 |
+
def __init__(self, config, mode, device='cpu', **kwargs):
|
218 |
+
config = edict(config)
|
219 |
+
config.workers = config.workers // 2
|
220 |
+
self.config = config
|
221 |
+
nyu_conf = change_dataset(edict(config), 'nyu')
|
222 |
+
kitti_conf = change_dataset(edict(config), 'kitti')
|
223 |
+
|
224 |
+
# make nyu default for testing
|
225 |
+
self.config = config = nyu_conf
|
226 |
+
img_size = self.config.get("img_size", None)
|
227 |
+
img_size = img_size if self.config.get(
|
228 |
+
"do_input_resize", False) else None
|
229 |
+
if mode == 'train':
|
230 |
+
nyu_loader = DepthDataLoader(
|
231 |
+
nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
|
232 |
+
kitti_loader = DepthDataLoader(
|
233 |
+
kitti_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
|
234 |
+
# It has been changed to repetitive roundrobin
|
235 |
+
self.data = RepetitiveRoundRobinDataLoader(
|
236 |
+
nyu_loader, kitti_loader)
|
237 |
+
else:
|
238 |
+
self.data = DepthDataLoader(nyu_conf, mode, device=device).data
|
239 |
+
|
240 |
+
|
241 |
+
def remove_leading_slash(s):
|
242 |
+
if s[0] == '/' or s[0] == '\\':
|
243 |
+
return s[1:]
|
244 |
+
return s
|
245 |
+
|
246 |
+
|
247 |
+
class CachedReader:
|
248 |
+
def __init__(self, shared_dict=None):
|
249 |
+
if shared_dict:
|
250 |
+
self._cache = shared_dict
|
251 |
+
else:
|
252 |
+
self._cache = {}
|
253 |
+
|
254 |
+
def open(self, fpath):
|
255 |
+
im = self._cache.get(fpath, None)
|
256 |
+
if im is None:
|
257 |
+
im = self._cache[fpath] = Image.open(fpath)
|
258 |
+
return im
|
259 |
+
|
260 |
+
|
261 |
+
class ImReader:
|
262 |
+
def __init__(self):
|
263 |
+
pass
|
264 |
+
|
265 |
+
# @cache
|
266 |
+
def open(self, fpath):
|
267 |
+
return Image.open(fpath)
|
268 |
+
|
269 |
+
|
270 |
+
class DataLoadPreprocess(Dataset):
|
271 |
+
def __init__(self, config, mode, transform=None, is_for_online_eval=False, **kwargs):
|
272 |
+
self.config = config
|
273 |
+
if mode == 'online_eval':
|
274 |
+
with open(config.filenames_file_eval, 'r') as f:
|
275 |
+
self.filenames = f.readlines()
|
276 |
+
else:
|
277 |
+
with open(config.filenames_file, 'r') as f:
|
278 |
+
self.filenames = f.readlines()
|
279 |
+
|
280 |
+
self.mode = mode
|
281 |
+
self.transform = transform
|
282 |
+
self.to_tensor = ToTensor(mode)
|
283 |
+
self.is_for_online_eval = is_for_online_eval
|
284 |
+
if config.use_shared_dict:
|
285 |
+
self.reader = CachedReader(config.shared_dict)
|
286 |
+
else:
|
287 |
+
self.reader = ImReader()
|
288 |
+
|
289 |
+
def postprocess(self, sample):
|
290 |
+
return sample
|
291 |
+
|
292 |
+
def __getitem__(self, idx):
|
293 |
+
sample_path = self.filenames[idx]
|
294 |
+
focal = float(sample_path.split()[2])
|
295 |
+
sample = {}
|
296 |
+
|
297 |
+
if self.mode == 'train':
|
298 |
+
if self.config.dataset == 'kitti' and self.config.use_right and random.random() > 0.5:
|
299 |
+
image_path = os.path.join(
|
300 |
+
self.config.data_path, remove_leading_slash(sample_path.split()[3]))
|
301 |
+
depth_path = os.path.join(
|
302 |
+
self.config.gt_path, remove_leading_slash(sample_path.split()[4]))
|
303 |
+
else:
|
304 |
+
image_path = os.path.join(
|
305 |
+
self.config.data_path, remove_leading_slash(sample_path.split()[0]))
|
306 |
+
depth_path = os.path.join(
|
307 |
+
self.config.gt_path, remove_leading_slash(sample_path.split()[1]))
|
308 |
+
|
309 |
+
image = self.reader.open(image_path)
|
310 |
+
depth_gt = self.reader.open(depth_path)
|
311 |
+
w, h = image.size
|
312 |
+
|
313 |
+
if self.config.do_kb_crop:
|
314 |
+
height = image.height
|
315 |
+
width = image.width
|
316 |
+
top_margin = int(height - 352)
|
317 |
+
left_margin = int((width - 1216) / 2)
|
318 |
+
depth_gt = depth_gt.crop(
|
319 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
320 |
+
image = image.crop(
|
321 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
322 |
+
|
323 |
+
# Avoid blank boundaries due to pixel registration?
|
324 |
+
# Train images have white border. Test images have black border.
|
325 |
+
if self.config.dataset == 'nyu' and self.config.avoid_boundary:
|
326 |
+
# print("Avoiding Blank Boundaries!")
|
327 |
+
# We just crop and pad again with reflect padding to original size
|
328 |
+
# original_size = image.size
|
329 |
+
crop_params = get_white_border(np.array(image, dtype=np.uint8))
|
330 |
+
image = image.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
|
331 |
+
depth_gt = depth_gt.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
|
332 |
+
|
333 |
+
# Use reflect padding to fill the blank
|
334 |
+
image = np.array(image)
|
335 |
+
image = np.pad(image, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), mode='reflect')
|
336 |
+
image = Image.fromarray(image)
|
337 |
+
|
338 |
+
depth_gt = np.array(depth_gt)
|
339 |
+
depth_gt = np.pad(depth_gt, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right)), 'constant', constant_values=0)
|
340 |
+
depth_gt = Image.fromarray(depth_gt)
|
341 |
+
|
342 |
+
|
343 |
+
if self.config.do_random_rotate and (self.config.aug):
|
344 |
+
random_angle = (random.random() - 0.5) * 2 * self.config.degree
|
345 |
+
image = self.rotate_image(image, random_angle)
|
346 |
+
depth_gt = self.rotate_image(
|
347 |
+
depth_gt, random_angle, flag=Image.NEAREST)
|
348 |
+
|
349 |
+
image = np.asarray(image, dtype=np.float32) / 255.0
|
350 |
+
depth_gt = np.asarray(depth_gt, dtype=np.float32)
|
351 |
+
depth_gt = np.expand_dims(depth_gt, axis=2)
|
352 |
+
|
353 |
+
if self.config.dataset == 'nyu':
|
354 |
+
depth_gt = depth_gt / 1000.0
|
355 |
+
else:
|
356 |
+
depth_gt = depth_gt / 256.0
|
357 |
+
|
358 |
+
if self.config.aug and (self.config.random_crop):
|
359 |
+
image, depth_gt = self.random_crop(
|
360 |
+
image, depth_gt, self.config.input_height, self.config.input_width)
|
361 |
+
|
362 |
+
if self.config.aug and self.config.random_translate:
|
363 |
+
# print("Random Translation!")
|
364 |
+
image, depth_gt = self.random_translate(image, depth_gt, self.config.max_translation)
|
365 |
+
|
366 |
+
image, depth_gt = self.train_preprocess(image, depth_gt)
|
367 |
+
mask = np.logical_and(depth_gt > self.config.min_depth,
|
368 |
+
depth_gt < self.config.max_depth).squeeze()[None, ...]
|
369 |
+
sample = {'image': image, 'depth': depth_gt, 'focal': focal,
|
370 |
+
'mask': mask, **sample}
|
371 |
+
|
372 |
+
else:
|
373 |
+
if self.mode == 'online_eval':
|
374 |
+
data_path = self.config.data_path_eval
|
375 |
+
else:
|
376 |
+
data_path = self.config.data_path
|
377 |
+
|
378 |
+
image_path = os.path.join(
|
379 |
+
data_path, remove_leading_slash(sample_path.split()[0]))
|
380 |
+
image = np.asarray(self.reader.open(image_path),
|
381 |
+
dtype=np.float32) / 255.0
|
382 |
+
|
383 |
+
if self.mode == 'online_eval':
|
384 |
+
gt_path = self.config.gt_path_eval
|
385 |
+
depth_path = os.path.join(
|
386 |
+
gt_path, remove_leading_slash(sample_path.split()[1]))
|
387 |
+
has_valid_depth = False
|
388 |
+
try:
|
389 |
+
depth_gt = self.reader.open(depth_path)
|
390 |
+
has_valid_depth = True
|
391 |
+
except IOError:
|
392 |
+
depth_gt = False
|
393 |
+
# print('Missing gt for {}'.format(image_path))
|
394 |
+
|
395 |
+
if has_valid_depth:
|
396 |
+
depth_gt = np.asarray(depth_gt, dtype=np.float32)
|
397 |
+
depth_gt = np.expand_dims(depth_gt, axis=2)
|
398 |
+
if self.config.dataset == 'nyu':
|
399 |
+
depth_gt = depth_gt / 1000.0
|
400 |
+
else:
|
401 |
+
depth_gt = depth_gt / 256.0
|
402 |
+
|
403 |
+
mask = np.logical_and(
|
404 |
+
depth_gt >= self.config.min_depth, depth_gt <= self.config.max_depth).squeeze()[None, ...]
|
405 |
+
else:
|
406 |
+
mask = False
|
407 |
+
|
408 |
+
if self.config.do_kb_crop:
|
409 |
+
height = image.shape[0]
|
410 |
+
width = image.shape[1]
|
411 |
+
top_margin = int(height - 352)
|
412 |
+
left_margin = int((width - 1216) / 2)
|
413 |
+
image = image[top_margin:top_margin + 352,
|
414 |
+
left_margin:left_margin + 1216, :]
|
415 |
+
if self.mode == 'online_eval' and has_valid_depth:
|
416 |
+
depth_gt = depth_gt[top_margin:top_margin +
|
417 |
+
352, left_margin:left_margin + 1216, :]
|
418 |
+
|
419 |
+
if self.mode == 'online_eval':
|
420 |
+
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth,
|
421 |
+
'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1],
|
422 |
+
'mask': mask}
|
423 |
+
else:
|
424 |
+
sample = {'image': image, 'focal': focal}
|
425 |
+
|
426 |
+
if (self.mode == 'train') or ('has_valid_depth' in sample and sample['has_valid_depth']):
|
427 |
+
mask = np.logical_and(depth_gt > self.config.min_depth,
|
428 |
+
depth_gt < self.config.max_depth).squeeze()[None, ...]
|
429 |
+
sample['mask'] = mask
|
430 |
+
|
431 |
+
if self.transform:
|
432 |
+
sample = self.transform(sample)
|
433 |
+
|
434 |
+
sample = self.postprocess(sample)
|
435 |
+
sample['dataset'] = self.config.dataset
|
436 |
+
sample = {**sample, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]}
|
437 |
+
|
438 |
+
return sample
|
439 |
+
|
440 |
+
def rotate_image(self, image, angle, flag=Image.BILINEAR):
|
441 |
+
result = image.rotate(angle, resample=flag)
|
442 |
+
return result
|
443 |
+
|
444 |
+
def random_crop(self, img, depth, height, width):
|
445 |
+
assert img.shape[0] >= height
|
446 |
+
assert img.shape[1] >= width
|
447 |
+
assert img.shape[0] == depth.shape[0]
|
448 |
+
assert img.shape[1] == depth.shape[1]
|
449 |
+
x = random.randint(0, img.shape[1] - width)
|
450 |
+
y = random.randint(0, img.shape[0] - height)
|
451 |
+
img = img[y:y + height, x:x + width, :]
|
452 |
+
depth = depth[y:y + height, x:x + width, :]
|
453 |
+
|
454 |
+
return img, depth
|
455 |
+
|
456 |
+
def random_translate(self, img, depth, max_t=20):
|
457 |
+
assert img.shape[0] == depth.shape[0]
|
458 |
+
assert img.shape[1] == depth.shape[1]
|
459 |
+
p = self.config.translate_prob
|
460 |
+
do_translate = random.random()
|
461 |
+
if do_translate > p:
|
462 |
+
return img, depth
|
463 |
+
x = random.randint(-max_t, max_t)
|
464 |
+
y = random.randint(-max_t, max_t)
|
465 |
+
M = np.float32([[1, 0, x], [0, 1, y]])
|
466 |
+
# print(img.shape, depth.shape)
|
467 |
+
img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
|
468 |
+
depth = cv2.warpAffine(depth, M, (depth.shape[1], depth.shape[0]))
|
469 |
+
depth = depth.squeeze()[..., None] # add channel dim back. Affine warp removes it
|
470 |
+
# print("after", img.shape, depth.shape)
|
471 |
+
return img, depth
|
472 |
+
|
473 |
+
def train_preprocess(self, image, depth_gt):
|
474 |
+
if self.config.aug:
|
475 |
+
# Random flipping
|
476 |
+
do_flip = random.random()
|
477 |
+
if do_flip > 0.5:
|
478 |
+
image = (image[:, ::-1, :]).copy()
|
479 |
+
depth_gt = (depth_gt[:, ::-1, :]).copy()
|
480 |
+
|
481 |
+
# Random gamma, brightness, color augmentation
|
482 |
+
do_augment = random.random()
|
483 |
+
if do_augment > 0.5:
|
484 |
+
image = self.augment_image(image)
|
485 |
+
|
486 |
+
return image, depth_gt
|
487 |
+
|
488 |
+
def augment_image(self, image):
|
489 |
+
# gamma augmentation
|
490 |
+
gamma = random.uniform(0.9, 1.1)
|
491 |
+
image_aug = image ** gamma
|
492 |
+
|
493 |
+
# brightness augmentation
|
494 |
+
if self.config.dataset == 'nyu':
|
495 |
+
brightness = random.uniform(0.75, 1.25)
|
496 |
+
else:
|
497 |
+
brightness = random.uniform(0.9, 1.1)
|
498 |
+
image_aug = image_aug * brightness
|
499 |
+
|
500 |
+
# color augmentation
|
501 |
+
colors = np.random.uniform(0.9, 1.1, size=3)
|
502 |
+
white = np.ones((image.shape[0], image.shape[1]))
|
503 |
+
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
|
504 |
+
image_aug *= color_image
|
505 |
+
image_aug = np.clip(image_aug, 0, 1)
|
506 |
+
|
507 |
+
return image_aug
|
508 |
+
|
509 |
+
def __len__(self):
|
510 |
+
return len(self.filenames)
|
511 |
+
|
512 |
+
|
513 |
+
class ToTensor(object):
|
514 |
+
def __init__(self, mode, do_normalize=False, size=None):
|
515 |
+
self.mode = mode
|
516 |
+
self.normalize = transforms.Normalize(
|
517 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
|
518 |
+
self.size = size
|
519 |
+
if size is not None:
|
520 |
+
self.resize = transforms.Resize(size=size)
|
521 |
+
else:
|
522 |
+
self.resize = nn.Identity()
|
523 |
+
|
524 |
+
def __call__(self, sample):
|
525 |
+
image, focal = sample['image'], sample['focal']
|
526 |
+
image = self.to_tensor(image)
|
527 |
+
image = self.normalize(image)
|
528 |
+
image = self.resize(image)
|
529 |
+
|
530 |
+
if self.mode == 'test':
|
531 |
+
return {'image': image, 'focal': focal}
|
532 |
+
|
533 |
+
depth = sample['depth']
|
534 |
+
if self.mode == 'train':
|
535 |
+
depth = self.to_tensor(depth)
|
536 |
+
return {**sample, 'image': image, 'depth': depth, 'focal': focal}
|
537 |
+
else:
|
538 |
+
has_valid_depth = sample['has_valid_depth']
|
539 |
+
image = self.resize(image)
|
540 |
+
return {**sample, 'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth,
|
541 |
+
'image_path': sample['image_path'], 'depth_path': sample['depth_path']}
|
542 |
+
|
543 |
+
def to_tensor(self, pic):
|
544 |
+
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
|
545 |
+
raise TypeError(
|
546 |
+
'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
|
547 |
+
|
548 |
+
if isinstance(pic, np.ndarray):
|
549 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
550 |
+
return img
|
551 |
+
|
552 |
+
# handle PIL Image
|
553 |
+
if pic.mode == 'I':
|
554 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
555 |
+
elif pic.mode == 'I;16':
|
556 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
557 |
+
else:
|
558 |
+
img = torch.ByteTensor(
|
559 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
560 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
561 |
+
if pic.mode == 'YCbCr':
|
562 |
+
nchannel = 3
|
563 |
+
elif pic.mode == 'I;16':
|
564 |
+
nchannel = 1
|
565 |
+
else:
|
566 |
+
nchannel = len(pic.mode)
|
567 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
568 |
+
|
569 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
570 |
+
if isinstance(img, torch.ByteTensor):
|
571 |
+
return img.float()
|
572 |
+
else:
|
573 |
+
return img
|
zoedepth/data/ddad.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torch.utils.data import DataLoader, Dataset
|
31 |
+
from torchvision import transforms
|
32 |
+
|
33 |
+
|
34 |
+
class ToTensor(object):
|
35 |
+
def __init__(self, resize_shape):
|
36 |
+
# self.normalize = transforms.Normalize(
|
37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
38 |
+
self.normalize = lambda x : x
|
39 |
+
self.resize = transforms.Resize(resize_shape)
|
40 |
+
|
41 |
+
def __call__(self, sample):
|
42 |
+
image, depth = sample['image'], sample['depth']
|
43 |
+
image = self.to_tensor(image)
|
44 |
+
image = self.normalize(image)
|
45 |
+
depth = self.to_tensor(depth)
|
46 |
+
|
47 |
+
image = self.resize(image)
|
48 |
+
|
49 |
+
return {'image': image, 'depth': depth, 'dataset': "ddad"}
|
50 |
+
|
51 |
+
def to_tensor(self, pic):
|
52 |
+
|
53 |
+
if isinstance(pic, np.ndarray):
|
54 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
55 |
+
return img
|
56 |
+
|
57 |
+
# # handle PIL Image
|
58 |
+
if pic.mode == 'I':
|
59 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
60 |
+
elif pic.mode == 'I;16':
|
61 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
62 |
+
else:
|
63 |
+
img = torch.ByteTensor(
|
64 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
65 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
66 |
+
if pic.mode == 'YCbCr':
|
67 |
+
nchannel = 3
|
68 |
+
elif pic.mode == 'I;16':
|
69 |
+
nchannel = 1
|
70 |
+
else:
|
71 |
+
nchannel = len(pic.mode)
|
72 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
73 |
+
|
74 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
75 |
+
|
76 |
+
if isinstance(img, torch.ByteTensor):
|
77 |
+
return img.float()
|
78 |
+
else:
|
79 |
+
return img
|
80 |
+
|
81 |
+
|
82 |
+
class DDAD(Dataset):
|
83 |
+
def __init__(self, data_dir_root, resize_shape):
|
84 |
+
import glob
|
85 |
+
|
86 |
+
# image paths are of the form <data_dir_root>/{outleft, depthmap}/*.png
|
87 |
+
self.image_files = glob.glob(os.path.join(data_dir_root, '*.png'))
|
88 |
+
self.depth_files = [r.replace("_rgb.png", "_depth.npy")
|
89 |
+
for r in self.image_files]
|
90 |
+
self.transform = ToTensor(resize_shape)
|
91 |
+
|
92 |
+
def __getitem__(self, idx):
|
93 |
+
|
94 |
+
image_path = self.image_files[idx]
|
95 |
+
depth_path = self.depth_files[idx]
|
96 |
+
|
97 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
98 |
+
depth = np.load(depth_path) # meters
|
99 |
+
|
100 |
+
# depth[depth > 8] = -1
|
101 |
+
depth = depth[..., None]
|
102 |
+
|
103 |
+
sample = dict(image=image, depth=depth)
|
104 |
+
sample = self.transform(sample)
|
105 |
+
|
106 |
+
if idx == 0:
|
107 |
+
print(sample["image"].shape)
|
108 |
+
|
109 |
+
return sample
|
110 |
+
|
111 |
+
def __len__(self):
|
112 |
+
return len(self.image_files)
|
113 |
+
|
114 |
+
|
115 |
+
def get_ddad_loader(data_dir_root, resize_shape, batch_size=1, **kwargs):
|
116 |
+
dataset = DDAD(data_dir_root, resize_shape)
|
117 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
zoedepth/data/diml_indoor_test.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torch.utils.data import DataLoader, Dataset
|
31 |
+
from torchvision import transforms
|
32 |
+
|
33 |
+
|
34 |
+
class ToTensor(object):
|
35 |
+
def __init__(self):
|
36 |
+
# self.normalize = transforms.Normalize(
|
37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
38 |
+
self.normalize = lambda x : x
|
39 |
+
self.resize = transforms.Resize((480, 640))
|
40 |
+
|
41 |
+
def __call__(self, sample):
|
42 |
+
image, depth = sample['image'], sample['depth']
|
43 |
+
image = self.to_tensor(image)
|
44 |
+
image = self.normalize(image)
|
45 |
+
depth = self.to_tensor(depth)
|
46 |
+
|
47 |
+
image = self.resize(image)
|
48 |
+
|
49 |
+
return {'image': image, 'depth': depth, 'dataset': "diml_indoor"}
|
50 |
+
|
51 |
+
def to_tensor(self, pic):
|
52 |
+
|
53 |
+
if isinstance(pic, np.ndarray):
|
54 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
55 |
+
return img
|
56 |
+
|
57 |
+
# # handle PIL Image
|
58 |
+
if pic.mode == 'I':
|
59 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
60 |
+
elif pic.mode == 'I;16':
|
61 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
62 |
+
else:
|
63 |
+
img = torch.ByteTensor(
|
64 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
65 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
66 |
+
if pic.mode == 'YCbCr':
|
67 |
+
nchannel = 3
|
68 |
+
elif pic.mode == 'I;16':
|
69 |
+
nchannel = 1
|
70 |
+
else:
|
71 |
+
nchannel = len(pic.mode)
|
72 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
73 |
+
|
74 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
75 |
+
if isinstance(img, torch.ByteTensor):
|
76 |
+
return img.float()
|
77 |
+
else:
|
78 |
+
return img
|
79 |
+
|
80 |
+
|
81 |
+
class DIML_Indoor(Dataset):
|
82 |
+
def __init__(self, data_dir_root):
|
83 |
+
import glob
|
84 |
+
|
85 |
+
# image paths are of the form <data_dir_root>/{HR, LR}/<scene>/{color, depth_filled}/*.png
|
86 |
+
self.image_files = glob.glob(os.path.join(
|
87 |
+
data_dir_root, "LR", '*', 'color', '*.png'))
|
88 |
+
self.depth_files = [r.replace("color", "depth_filled").replace(
|
89 |
+
"_c.png", "_depth_filled.png") for r in self.image_files]
|
90 |
+
self.transform = ToTensor()
|
91 |
+
|
92 |
+
def __getitem__(self, idx):
|
93 |
+
image_path = self.image_files[idx]
|
94 |
+
depth_path = self.depth_files[idx]
|
95 |
+
|
96 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
97 |
+
depth = np.asarray(Image.open(depth_path),
|
98 |
+
dtype='uint16') / 1000.0 # mm to meters
|
99 |
+
|
100 |
+
# print(np.shape(image))
|
101 |
+
# print(np.shape(depth))
|
102 |
+
|
103 |
+
# depth[depth > 8] = -1
|
104 |
+
depth = depth[..., None]
|
105 |
+
|
106 |
+
sample = dict(image=image, depth=depth)
|
107 |
+
|
108 |
+
# return sample
|
109 |
+
sample = self.transform(sample)
|
110 |
+
|
111 |
+
if idx == 0:
|
112 |
+
print(sample["image"].shape)
|
113 |
+
|
114 |
+
return sample
|
115 |
+
|
116 |
+
def __len__(self):
|
117 |
+
return len(self.image_files)
|
118 |
+
|
119 |
+
|
120 |
+
def get_diml_indoor_loader(data_dir_root, batch_size=1, **kwargs):
|
121 |
+
dataset = DIML_Indoor(data_dir_root)
|
122 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
123 |
+
|
124 |
+
# get_diml_indoor_loader(data_dir_root="datasets/diml/indoor/test/HR")
|
125 |
+
# get_diml_indoor_loader(data_dir_root="datasets/diml/indoor/test/LR")
|
zoedepth/data/diml_outdoor_test.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torch.utils.data import DataLoader, Dataset
|
31 |
+
from torchvision import transforms
|
32 |
+
|
33 |
+
|
34 |
+
class ToTensor(object):
|
35 |
+
def __init__(self):
|
36 |
+
# self.normalize = transforms.Normalize(
|
37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
38 |
+
self.normalize = lambda x : x
|
39 |
+
|
40 |
+
def __call__(self, sample):
|
41 |
+
image, depth = sample['image'], sample['depth']
|
42 |
+
image = self.to_tensor(image)
|
43 |
+
image = self.normalize(image)
|
44 |
+
depth = self.to_tensor(depth)
|
45 |
+
|
46 |
+
return {'image': image, 'depth': depth, 'dataset': "diml_outdoor"}
|
47 |
+
|
48 |
+
def to_tensor(self, pic):
|
49 |
+
|
50 |
+
if isinstance(pic, np.ndarray):
|
51 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
52 |
+
return img
|
53 |
+
|
54 |
+
# # handle PIL Image
|
55 |
+
if pic.mode == 'I':
|
56 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
57 |
+
elif pic.mode == 'I;16':
|
58 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
59 |
+
else:
|
60 |
+
img = torch.ByteTensor(
|
61 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
62 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
63 |
+
if pic.mode == 'YCbCr':
|
64 |
+
nchannel = 3
|
65 |
+
elif pic.mode == 'I;16':
|
66 |
+
nchannel = 1
|
67 |
+
else:
|
68 |
+
nchannel = len(pic.mode)
|
69 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
70 |
+
|
71 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
72 |
+
if isinstance(img, torch.ByteTensor):
|
73 |
+
return img.float()
|
74 |
+
else:
|
75 |
+
return img
|
76 |
+
|
77 |
+
|
78 |
+
class DIML_Outdoor(Dataset):
|
79 |
+
def __init__(self, data_dir_root):
|
80 |
+
import glob
|
81 |
+
|
82 |
+
# image paths are of the form <data_dir_root>/{outleft, depthmap}/*.png
|
83 |
+
self.image_files = glob.glob(os.path.join(
|
84 |
+
data_dir_root, "*", 'outleft', '*.png'))
|
85 |
+
self.depth_files = [r.replace("outleft", "depthmap")
|
86 |
+
for r in self.image_files]
|
87 |
+
self.transform = ToTensor()
|
88 |
+
|
89 |
+
def __getitem__(self, idx):
|
90 |
+
image_path = self.image_files[idx]
|
91 |
+
depth_path = self.depth_files[idx]
|
92 |
+
|
93 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
94 |
+
depth = np.asarray(Image.open(depth_path),
|
95 |
+
dtype='uint16') / 1000.0 # mm to meters
|
96 |
+
|
97 |
+
# depth[depth > 8] = -1
|
98 |
+
depth = depth[..., None]
|
99 |
+
|
100 |
+
sample = dict(image=image, depth=depth, dataset="diml_outdoor")
|
101 |
+
|
102 |
+
# return sample
|
103 |
+
return self.transform(sample)
|
104 |
+
|
105 |
+
def __len__(self):
|
106 |
+
return len(self.image_files)
|
107 |
+
|
108 |
+
|
109 |
+
def get_diml_outdoor_loader(data_dir_root, batch_size=1, **kwargs):
|
110 |
+
dataset = DIML_Outdoor(data_dir_root)
|
111 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
112 |
+
|
113 |
+
# get_diml_outdoor_loader(data_dir_root="datasets/diml/outdoor/test/HR")
|
114 |
+
# get_diml_outdoor_loader(data_dir_root="datasets/diml/outdoor/test/LR")
|
zoedepth/data/diode.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torch.utils.data import DataLoader, Dataset
|
31 |
+
from torchvision import transforms
|
32 |
+
|
33 |
+
|
34 |
+
class ToTensor(object):
|
35 |
+
def __init__(self):
|
36 |
+
# self.normalize = transforms.Normalize(
|
37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
38 |
+
self.normalize = lambda x : x
|
39 |
+
self.resize = transforms.Resize(480)
|
40 |
+
|
41 |
+
def __call__(self, sample):
|
42 |
+
image, depth = sample['image'], sample['depth']
|
43 |
+
image = self.to_tensor(image)
|
44 |
+
image = self.normalize(image)
|
45 |
+
depth = self.to_tensor(depth)
|
46 |
+
|
47 |
+
image = self.resize(image)
|
48 |
+
|
49 |
+
return {'image': image, 'depth': depth, 'dataset': "diode"}
|
50 |
+
|
51 |
+
def to_tensor(self, pic):
|
52 |
+
|
53 |
+
if isinstance(pic, np.ndarray):
|
54 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
55 |
+
return img
|
56 |
+
|
57 |
+
# # handle PIL Image
|
58 |
+
if pic.mode == 'I':
|
59 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
60 |
+
elif pic.mode == 'I;16':
|
61 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
62 |
+
else:
|
63 |
+
img = torch.ByteTensor(
|
64 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
65 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
66 |
+
if pic.mode == 'YCbCr':
|
67 |
+
nchannel = 3
|
68 |
+
elif pic.mode == 'I;16':
|
69 |
+
nchannel = 1
|
70 |
+
else:
|
71 |
+
nchannel = len(pic.mode)
|
72 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
73 |
+
|
74 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
75 |
+
|
76 |
+
if isinstance(img, torch.ByteTensor):
|
77 |
+
return img.float()
|
78 |
+
else:
|
79 |
+
return img
|
80 |
+
|
81 |
+
|
82 |
+
class DIODE(Dataset):
|
83 |
+
def __init__(self, data_dir_root):
|
84 |
+
import glob
|
85 |
+
|
86 |
+
# image paths are of the form <data_dir_root>/scene_#/scan_#/*.png
|
87 |
+
self.image_files = glob.glob(
|
88 |
+
os.path.join(data_dir_root, '*', '*', '*.png'))
|
89 |
+
self.depth_files = [r.replace(".png", "_depth.npy")
|
90 |
+
for r in self.image_files]
|
91 |
+
self.depth_mask_files = [
|
92 |
+
r.replace(".png", "_depth_mask.npy") for r in self.image_files]
|
93 |
+
self.transform = ToTensor()
|
94 |
+
|
95 |
+
def __getitem__(self, idx):
|
96 |
+
image_path = self.image_files[idx]
|
97 |
+
depth_path = self.depth_files[idx]
|
98 |
+
depth_mask_path = self.depth_mask_files[idx]
|
99 |
+
|
100 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
101 |
+
depth = np.load(depth_path) # in meters
|
102 |
+
valid = np.load(depth_mask_path) # binary
|
103 |
+
|
104 |
+
# depth[depth > 8] = -1
|
105 |
+
# depth = depth[..., None]
|
106 |
+
|
107 |
+
sample = dict(image=image, depth=depth, valid=valid)
|
108 |
+
|
109 |
+
# return sample
|
110 |
+
sample = self.transform(sample)
|
111 |
+
|
112 |
+
if idx == 0:
|
113 |
+
print(sample["image"].shape)
|
114 |
+
|
115 |
+
return sample
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.image_files)
|
119 |
+
|
120 |
+
|
121 |
+
def get_diode_loader(data_dir_root, batch_size=1, **kwargs):
|
122 |
+
dataset = DIODE(data_dir_root)
|
123 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
124 |
+
|
125 |
+
# get_diode_loader(data_dir_root="datasets/diode/val/outdoor")
|
zoedepth/data/hypersim.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import glob
|
26 |
+
import os
|
27 |
+
|
28 |
+
import h5py
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from PIL import Image
|
32 |
+
from torch.utils.data import DataLoader, Dataset
|
33 |
+
from torchvision import transforms
|
34 |
+
|
35 |
+
|
36 |
+
def hypersim_distance_to_depth(npyDistance):
|
37 |
+
intWidth, intHeight, fltFocal = 1024, 768, 886.81
|
38 |
+
|
39 |
+
npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape(
|
40 |
+
1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None]
|
41 |
+
npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5,
|
42 |
+
intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None]
|
43 |
+
npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32)
|
44 |
+
npyImageplane = np.concatenate(
|
45 |
+
[npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2)
|
46 |
+
|
47 |
+
npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal
|
48 |
+
return npyDepth
|
49 |
+
|
50 |
+
|
51 |
+
class ToTensor(object):
|
52 |
+
def __init__(self):
|
53 |
+
# self.normalize = transforms.Normalize(
|
54 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
55 |
+
self.normalize = lambda x: x
|
56 |
+
self.resize = transforms.Resize((480, 640))
|
57 |
+
|
58 |
+
def __call__(self, sample):
|
59 |
+
image, depth = sample['image'], sample['depth']
|
60 |
+
image = self.to_tensor(image)
|
61 |
+
image = self.normalize(image)
|
62 |
+
depth = self.to_tensor(depth)
|
63 |
+
|
64 |
+
image = self.resize(image)
|
65 |
+
|
66 |
+
return {'image': image, 'depth': depth, 'dataset': "hypersim"}
|
67 |
+
|
68 |
+
def to_tensor(self, pic):
|
69 |
+
|
70 |
+
if isinstance(pic, np.ndarray):
|
71 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
72 |
+
return img
|
73 |
+
|
74 |
+
# # handle PIL Image
|
75 |
+
if pic.mode == 'I':
|
76 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
77 |
+
elif pic.mode == 'I;16':
|
78 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
79 |
+
else:
|
80 |
+
img = torch.ByteTensor(
|
81 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
82 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
83 |
+
if pic.mode == 'YCbCr':
|
84 |
+
nchannel = 3
|
85 |
+
elif pic.mode == 'I;16':
|
86 |
+
nchannel = 1
|
87 |
+
else:
|
88 |
+
nchannel = len(pic.mode)
|
89 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
90 |
+
|
91 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
92 |
+
if isinstance(img, torch.ByteTensor):
|
93 |
+
return img.float()
|
94 |
+
else:
|
95 |
+
return img
|
96 |
+
|
97 |
+
|
98 |
+
class HyperSim(Dataset):
|
99 |
+
def __init__(self, data_dir_root):
|
100 |
+
# image paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.tonemap.jpg
|
101 |
+
# depth paths are of the form <data_dir_root>/<scene>/images/scene_cam_#_final_preview/*.depth_meters.hdf5
|
102 |
+
self.image_files = glob.glob(os.path.join(
|
103 |
+
data_dir_root, '*', 'images', 'scene_cam_*_final_preview', '*.tonemap.jpg'))
|
104 |
+
self.depth_files = [r.replace("_final_preview", "_geometry_hdf5").replace(
|
105 |
+
".tonemap.jpg", ".depth_meters.hdf5") for r in self.image_files]
|
106 |
+
self.transform = ToTensor()
|
107 |
+
|
108 |
+
def __getitem__(self, idx):
|
109 |
+
image_path = self.image_files[idx]
|
110 |
+
depth_path = self.depth_files[idx]
|
111 |
+
|
112 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
113 |
+
|
114 |
+
# depth from hdf5
|
115 |
+
depth_fd = h5py.File(depth_path, "r")
|
116 |
+
# in meters (Euclidean distance)
|
117 |
+
distance_meters = np.array(depth_fd['dataset'])
|
118 |
+
depth = hypersim_distance_to_depth(
|
119 |
+
distance_meters) # in meters (planar depth)
|
120 |
+
|
121 |
+
# depth[depth > 8] = -1
|
122 |
+
depth = depth[..., None]
|
123 |
+
|
124 |
+
sample = dict(image=image, depth=depth)
|
125 |
+
sample = self.transform(sample)
|
126 |
+
|
127 |
+
if idx == 0:
|
128 |
+
print(sample["image"].shape)
|
129 |
+
|
130 |
+
return sample
|
131 |
+
|
132 |
+
def __len__(self):
|
133 |
+
return len(self.image_files)
|
134 |
+
|
135 |
+
|
136 |
+
def get_hypersim_loader(data_dir_root, batch_size=1, **kwargs):
|
137 |
+
dataset = HyperSim(data_dir_root)
|
138 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
zoedepth/data/ibims.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torch.utils.data import DataLoader, Dataset
|
31 |
+
from torchvision import transforms as T
|
32 |
+
|
33 |
+
|
34 |
+
class iBims(Dataset):
|
35 |
+
def __init__(self, config):
|
36 |
+
root_folder = config.ibims_root
|
37 |
+
with open(os.path.join(root_folder, "imagelist.txt"), 'r') as f:
|
38 |
+
imglist = f.read().split()
|
39 |
+
|
40 |
+
samples = []
|
41 |
+
for basename in imglist:
|
42 |
+
img_path = os.path.join(root_folder, 'rgb', basename + ".png")
|
43 |
+
depth_path = os.path.join(root_folder, 'depth', basename + ".png")
|
44 |
+
valid_mask_path = os.path.join(
|
45 |
+
root_folder, 'mask_invalid', basename+".png")
|
46 |
+
transp_mask_path = os.path.join(
|
47 |
+
root_folder, 'mask_transp', basename+".png")
|
48 |
+
|
49 |
+
samples.append(
|
50 |
+
(img_path, depth_path, valid_mask_path, transp_mask_path))
|
51 |
+
|
52 |
+
self.samples = samples
|
53 |
+
# self.normalize = T.Normalize(
|
54 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
55 |
+
self.normalize = lambda x : x
|
56 |
+
|
57 |
+
def __getitem__(self, idx):
|
58 |
+
img_path, depth_path, valid_mask_path, transp_mask_path = self.samples[idx]
|
59 |
+
|
60 |
+
img = np.asarray(Image.open(img_path), dtype=np.float32) / 255.0
|
61 |
+
depth = np.asarray(Image.open(depth_path),
|
62 |
+
dtype=np.uint16).astype('float')*50.0/65535
|
63 |
+
|
64 |
+
mask_valid = np.asarray(Image.open(valid_mask_path))
|
65 |
+
mask_transp = np.asarray(Image.open(transp_mask_path))
|
66 |
+
|
67 |
+
# depth = depth * mask_valid * mask_transp
|
68 |
+
depth = np.where(mask_valid * mask_transp, depth, -1)
|
69 |
+
|
70 |
+
img = torch.from_numpy(img).permute(2, 0, 1)
|
71 |
+
img = self.normalize(img)
|
72 |
+
depth = torch.from_numpy(depth).unsqueeze(0)
|
73 |
+
return dict(image=img, depth=depth, image_path=img_path, depth_path=depth_path, dataset='ibims')
|
74 |
+
|
75 |
+
def __len__(self):
|
76 |
+
return len(self.samples)
|
77 |
+
|
78 |
+
|
79 |
+
def get_ibims_loader(config, batch_size=1, **kwargs):
|
80 |
+
dataloader = DataLoader(iBims(config), batch_size=batch_size, **kwargs)
|
81 |
+
return dataloader
|
zoedepth/data/preprocess.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
from dataclasses import dataclass
|
27 |
+
from typing import Tuple, List
|
28 |
+
|
29 |
+
# dataclass to store the crop parameters
|
30 |
+
@dataclass
|
31 |
+
class CropParams:
|
32 |
+
top: int
|
33 |
+
bottom: int
|
34 |
+
left: int
|
35 |
+
right: int
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def get_border_params(rgb_image, tolerance=0.1, cut_off=20, value=0, level_diff_threshold=5, channel_axis=-1, min_border=5) -> CropParams:
|
40 |
+
gray_image = np.mean(rgb_image, axis=channel_axis)
|
41 |
+
h, w = gray_image.shape
|
42 |
+
|
43 |
+
|
44 |
+
def num_value_pixels(arr):
|
45 |
+
return np.sum(np.abs(arr - value) < level_diff_threshold)
|
46 |
+
|
47 |
+
def is_above_tolerance(arr, total_pixels):
|
48 |
+
return (num_value_pixels(arr) / total_pixels) > tolerance
|
49 |
+
|
50 |
+
# Crop top border until number of value pixels become below tolerance
|
51 |
+
top = min_border
|
52 |
+
while is_above_tolerance(gray_image[top, :], w) and top < h-1:
|
53 |
+
top += 1
|
54 |
+
if top > cut_off:
|
55 |
+
break
|
56 |
+
|
57 |
+
# Crop bottom border until number of value pixels become below tolerance
|
58 |
+
bottom = h - min_border
|
59 |
+
while is_above_tolerance(gray_image[bottom, :], w) and bottom > 0:
|
60 |
+
bottom -= 1
|
61 |
+
if h - bottom > cut_off:
|
62 |
+
break
|
63 |
+
|
64 |
+
# Crop left border until number of value pixels become below tolerance
|
65 |
+
left = min_border
|
66 |
+
while is_above_tolerance(gray_image[:, left], h) and left < w-1:
|
67 |
+
left += 1
|
68 |
+
if left > cut_off:
|
69 |
+
break
|
70 |
+
|
71 |
+
# Crop right border until number of value pixels become below tolerance
|
72 |
+
right = w - min_border
|
73 |
+
while is_above_tolerance(gray_image[:, right], h) and right > 0:
|
74 |
+
right -= 1
|
75 |
+
if w - right > cut_off:
|
76 |
+
break
|
77 |
+
|
78 |
+
|
79 |
+
return CropParams(top, bottom, left, right)
|
80 |
+
|
81 |
+
|
82 |
+
def get_white_border(rgb_image, value=255, **kwargs) -> CropParams:
|
83 |
+
"""Crops the white border of the RGB.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
rgb: RGB image, shape (H, W, 3).
|
87 |
+
Returns:
|
88 |
+
Crop parameters.
|
89 |
+
"""
|
90 |
+
if value == 255:
|
91 |
+
# assert range of values in rgb image is [0, 255]
|
92 |
+
assert np.max(rgb_image) <= 255 and np.min(rgb_image) >= 0, "RGB image values are not in range [0, 255]."
|
93 |
+
assert rgb_image.max() > 1, "RGB image values are not in range [0, 255]."
|
94 |
+
elif value == 1:
|
95 |
+
# assert range of values in rgb image is [0, 1]
|
96 |
+
assert np.max(rgb_image) <= 1 and np.min(rgb_image) >= 0, "RGB image values are not in range [0, 1]."
|
97 |
+
|
98 |
+
return get_border_params(rgb_image, value=value, **kwargs)
|
99 |
+
|
100 |
+
def get_black_border(rgb_image, **kwargs) -> CropParams:
|
101 |
+
"""Crops the black border of the RGB.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
rgb: RGB image, shape (H, W, 3).
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
Crop parameters.
|
108 |
+
"""
|
109 |
+
|
110 |
+
return get_border_params(rgb_image, value=0, **kwargs)
|
111 |
+
|
112 |
+
def crop_image(image: np.ndarray, crop_params: CropParams) -> np.ndarray:
|
113 |
+
"""Crops the image according to the crop parameters.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
image: RGB or depth image, shape (H, W, 3) or (H, W).
|
117 |
+
crop_params: Crop parameters.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
Cropped image.
|
121 |
+
"""
|
122 |
+
return image[crop_params.top:crop_params.bottom, crop_params.left:crop_params.right]
|
123 |
+
|
124 |
+
def crop_images(*images: np.ndarray, crop_params: CropParams) -> Tuple[np.ndarray]:
|
125 |
+
"""Crops the images according to the crop parameters.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
images: RGB or depth images, shape (H, W, 3) or (H, W).
|
129 |
+
crop_params: Crop parameters.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
Cropped images.
|
133 |
+
"""
|
134 |
+
return tuple(crop_image(image, crop_params) for image in images)
|
135 |
+
|
136 |
+
def crop_black_or_white_border(rgb_image, *other_images: np.ndarray, tolerance=0.1, cut_off=20, level_diff_threshold=5) -> Tuple[np.ndarray]:
|
137 |
+
"""Crops the white and black border of the RGB and depth images.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
rgb: RGB image, shape (H, W, 3). This image is used to determine the border.
|
141 |
+
other_images: The other images to crop according to the border of the RGB image.
|
142 |
+
Returns:
|
143 |
+
Cropped RGB and other images.
|
144 |
+
"""
|
145 |
+
# crop black border
|
146 |
+
crop_params = get_black_border(rgb_image, tolerance=tolerance, cut_off=cut_off, level_diff_threshold=level_diff_threshold)
|
147 |
+
cropped_images = crop_images(rgb_image, *other_images, crop_params=crop_params)
|
148 |
+
|
149 |
+
# crop white border
|
150 |
+
crop_params = get_white_border(cropped_images[0], tolerance=tolerance, cut_off=cut_off, level_diff_threshold=level_diff_threshold)
|
151 |
+
cropped_images = crop_images(*cropped_images, crop_params=crop_params)
|
152 |
+
|
153 |
+
return cropped_images
|
154 |
+
|
zoedepth/data/sun_rgbd_loader.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torch.utils.data import DataLoader, Dataset
|
31 |
+
from torchvision import transforms
|
32 |
+
|
33 |
+
|
34 |
+
class ToTensor(object):
|
35 |
+
def __init__(self):
|
36 |
+
# self.normalize = transforms.Normalize(
|
37 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
38 |
+
self.normalize = lambda x : x
|
39 |
+
|
40 |
+
def __call__(self, sample):
|
41 |
+
image, depth = sample['image'], sample['depth']
|
42 |
+
image = self.to_tensor(image)
|
43 |
+
image = self.normalize(image)
|
44 |
+
depth = self.to_tensor(depth)
|
45 |
+
|
46 |
+
return {'image': image, 'depth': depth, 'dataset': "sunrgbd"}
|
47 |
+
|
48 |
+
def to_tensor(self, pic):
|
49 |
+
|
50 |
+
if isinstance(pic, np.ndarray):
|
51 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
52 |
+
return img
|
53 |
+
|
54 |
+
# # handle PIL Image
|
55 |
+
if pic.mode == 'I':
|
56 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
57 |
+
elif pic.mode == 'I;16':
|
58 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
59 |
+
else:
|
60 |
+
img = torch.ByteTensor(
|
61 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
62 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
63 |
+
if pic.mode == 'YCbCr':
|
64 |
+
nchannel = 3
|
65 |
+
elif pic.mode == 'I;16':
|
66 |
+
nchannel = 1
|
67 |
+
else:
|
68 |
+
nchannel = len(pic.mode)
|
69 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
70 |
+
|
71 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
72 |
+
if isinstance(img, torch.ByteTensor):
|
73 |
+
return img.float()
|
74 |
+
else:
|
75 |
+
return img
|
76 |
+
|
77 |
+
|
78 |
+
class SunRGBD(Dataset):
|
79 |
+
def __init__(self, data_dir_root):
|
80 |
+
# test_file_dirs = loadmat(train_test_file)['alltest'].squeeze()
|
81 |
+
# all_test = [t[0].replace("/n/fs/sun3d/data/", "") for t in test_file_dirs]
|
82 |
+
# self.all_test = [os.path.join(data_dir_root, t) for t in all_test]
|
83 |
+
import glob
|
84 |
+
self.image_files = glob.glob(
|
85 |
+
os.path.join(data_dir_root, 'rgb', 'rgb', '*'))
|
86 |
+
self.depth_files = [
|
87 |
+
r.replace("rgb/rgb", "gt/gt").replace("jpg", "png") for r in self.image_files]
|
88 |
+
self.transform = ToTensor()
|
89 |
+
|
90 |
+
def __getitem__(self, idx):
|
91 |
+
image_path = self.image_files[idx]
|
92 |
+
depth_path = self.depth_files[idx]
|
93 |
+
|
94 |
+
image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0
|
95 |
+
depth = np.asarray(Image.open(depth_path), dtype='uint16') / 1000.0
|
96 |
+
depth[depth > 8] = -1
|
97 |
+
depth = depth[..., None]
|
98 |
+
return self.transform(dict(image=image, depth=depth))
|
99 |
+
|
100 |
+
def __len__(self):
|
101 |
+
return len(self.image_files)
|
102 |
+
|
103 |
+
|
104 |
+
def get_sunrgbd_loader(data_dir_root, batch_size=1, **kwargs):
|
105 |
+
dataset = SunRGBD(data_dir_root)
|
106 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
zoedepth/data/transforms.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import math
|
26 |
+
import random
|
27 |
+
|
28 |
+
import cv2
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
|
32 |
+
class RandomFliplr(object):
|
33 |
+
"""Horizontal flip of the sample with given probability.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, probability=0.5):
|
37 |
+
"""Init.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
probability (float, optional): Flip probability. Defaults to 0.5.
|
41 |
+
"""
|
42 |
+
self.__probability = probability
|
43 |
+
|
44 |
+
def __call__(self, sample):
|
45 |
+
prob = random.random()
|
46 |
+
|
47 |
+
if prob < self.__probability:
|
48 |
+
for k, v in sample.items():
|
49 |
+
if len(v.shape) >= 2:
|
50 |
+
sample[k] = np.fliplr(v).copy()
|
51 |
+
|
52 |
+
return sample
|
53 |
+
|
54 |
+
|
55 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
56 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
sample (dict): sample
|
60 |
+
size (tuple): image size
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
tuple: new size
|
64 |
+
"""
|
65 |
+
shape = list(sample["disparity"].shape)
|
66 |
+
|
67 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
68 |
+
return sample
|
69 |
+
|
70 |
+
scale = [0, 0]
|
71 |
+
scale[0] = size[0] / shape[0]
|
72 |
+
scale[1] = size[1] / shape[1]
|
73 |
+
|
74 |
+
scale = max(scale)
|
75 |
+
|
76 |
+
shape[0] = math.ceil(scale * shape[0])
|
77 |
+
shape[1] = math.ceil(scale * shape[1])
|
78 |
+
|
79 |
+
# resize
|
80 |
+
sample["image"] = cv2.resize(
|
81 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
82 |
+
)
|
83 |
+
|
84 |
+
sample["disparity"] = cv2.resize(
|
85 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
86 |
+
)
|
87 |
+
sample["mask"] = cv2.resize(
|
88 |
+
sample["mask"].astype(np.float32),
|
89 |
+
tuple(shape[::-1]),
|
90 |
+
interpolation=cv2.INTER_NEAREST,
|
91 |
+
)
|
92 |
+
sample["mask"] = sample["mask"].astype(bool)
|
93 |
+
|
94 |
+
return tuple(shape)
|
95 |
+
|
96 |
+
|
97 |
+
class RandomCrop(object):
|
98 |
+
"""Get a random crop of the sample with the given size (width, height).
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
width,
|
104 |
+
height,
|
105 |
+
resize_if_needed=False,
|
106 |
+
image_interpolation_method=cv2.INTER_AREA,
|
107 |
+
):
|
108 |
+
"""Init.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
width (int): output width
|
112 |
+
height (int): output height
|
113 |
+
resize_if_needed (bool, optional): If True, sample might be upsampled to ensure
|
114 |
+
that a crop of size (width, height) is possbile. Defaults to False.
|
115 |
+
"""
|
116 |
+
self.__size = (height, width)
|
117 |
+
self.__resize_if_needed = resize_if_needed
|
118 |
+
self.__image_interpolation_method = image_interpolation_method
|
119 |
+
|
120 |
+
def __call__(self, sample):
|
121 |
+
|
122 |
+
shape = sample["disparity"].shape
|
123 |
+
|
124 |
+
if self.__size[0] > shape[0] or self.__size[1] > shape[1]:
|
125 |
+
if self.__resize_if_needed:
|
126 |
+
shape = apply_min_size(
|
127 |
+
sample, self.__size, self.__image_interpolation_method
|
128 |
+
)
|
129 |
+
else:
|
130 |
+
raise Exception(
|
131 |
+
"Output size {} bigger than input size {}.".format(
|
132 |
+
self.__size, shape
|
133 |
+
)
|
134 |
+
)
|
135 |
+
|
136 |
+
offset = (
|
137 |
+
np.random.randint(shape[0] - self.__size[0] + 1),
|
138 |
+
np.random.randint(shape[1] - self.__size[1] + 1),
|
139 |
+
)
|
140 |
+
|
141 |
+
for k, v in sample.items():
|
142 |
+
if k == "code" or k == "basis":
|
143 |
+
continue
|
144 |
+
|
145 |
+
if len(sample[k].shape) >= 2:
|
146 |
+
sample[k] = v[
|
147 |
+
offset[0]: offset[0] + self.__size[0],
|
148 |
+
offset[1]: offset[1] + self.__size[1],
|
149 |
+
]
|
150 |
+
|
151 |
+
return sample
|
152 |
+
|
153 |
+
|
154 |
+
class Resize(object):
|
155 |
+
"""Resize sample to given size (width, height).
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
width,
|
161 |
+
height,
|
162 |
+
resize_target=True,
|
163 |
+
keep_aspect_ratio=False,
|
164 |
+
ensure_multiple_of=1,
|
165 |
+
resize_method="lower_bound",
|
166 |
+
image_interpolation_method=cv2.INTER_AREA,
|
167 |
+
letter_box=False,
|
168 |
+
):
|
169 |
+
"""Init.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
width (int): desired output width
|
173 |
+
height (int): desired output height
|
174 |
+
resize_target (bool, optional):
|
175 |
+
True: Resize the full sample (image, mask, target).
|
176 |
+
False: Resize image only.
|
177 |
+
Defaults to True.
|
178 |
+
keep_aspect_ratio (bool, optional):
|
179 |
+
True: Keep the aspect ratio of the input sample.
|
180 |
+
Output sample might not have the given width and height, and
|
181 |
+
resize behaviour depends on the parameter 'resize_method'.
|
182 |
+
Defaults to False.
|
183 |
+
ensure_multiple_of (int, optional):
|
184 |
+
Output width and height is constrained to be multiple of this parameter.
|
185 |
+
Defaults to 1.
|
186 |
+
resize_method (str, optional):
|
187 |
+
"lower_bound": Output will be at least as large as the given size.
|
188 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
189 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
190 |
+
Defaults to "lower_bound".
|
191 |
+
"""
|
192 |
+
self.__width = width
|
193 |
+
self.__height = height
|
194 |
+
|
195 |
+
self.__resize_target = resize_target
|
196 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
197 |
+
self.__multiple_of = ensure_multiple_of
|
198 |
+
self.__resize_method = resize_method
|
199 |
+
self.__image_interpolation_method = image_interpolation_method
|
200 |
+
self.__letter_box = letter_box
|
201 |
+
|
202 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
203 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
204 |
+
|
205 |
+
if max_val is not None and y > max_val:
|
206 |
+
y = (np.floor(x / self.__multiple_of)
|
207 |
+
* self.__multiple_of).astype(int)
|
208 |
+
|
209 |
+
if y < min_val:
|
210 |
+
y = (np.ceil(x / self.__multiple_of)
|
211 |
+
* self.__multiple_of).astype(int)
|
212 |
+
|
213 |
+
return y
|
214 |
+
|
215 |
+
def get_size(self, width, height):
|
216 |
+
# determine new height and width
|
217 |
+
scale_height = self.__height / height
|
218 |
+
scale_width = self.__width / width
|
219 |
+
|
220 |
+
if self.__keep_aspect_ratio:
|
221 |
+
if self.__resize_method == "lower_bound":
|
222 |
+
# scale such that output size is lower bound
|
223 |
+
if scale_width > scale_height:
|
224 |
+
# fit width
|
225 |
+
scale_height = scale_width
|
226 |
+
else:
|
227 |
+
# fit height
|
228 |
+
scale_width = scale_height
|
229 |
+
elif self.__resize_method == "upper_bound":
|
230 |
+
# scale such that output size is upper bound
|
231 |
+
if scale_width < scale_height:
|
232 |
+
# fit width
|
233 |
+
scale_height = scale_width
|
234 |
+
else:
|
235 |
+
# fit height
|
236 |
+
scale_width = scale_height
|
237 |
+
elif self.__resize_method == "minimal":
|
238 |
+
# scale as least as possbile
|
239 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
240 |
+
# fit width
|
241 |
+
scale_height = scale_width
|
242 |
+
else:
|
243 |
+
# fit height
|
244 |
+
scale_width = scale_height
|
245 |
+
else:
|
246 |
+
raise ValueError(
|
247 |
+
f"resize_method {self.__resize_method} not implemented"
|
248 |
+
)
|
249 |
+
|
250 |
+
if self.__resize_method == "lower_bound":
|
251 |
+
new_height = self.constrain_to_multiple_of(
|
252 |
+
scale_height * height, min_val=self.__height
|
253 |
+
)
|
254 |
+
new_width = self.constrain_to_multiple_of(
|
255 |
+
scale_width * width, min_val=self.__width
|
256 |
+
)
|
257 |
+
elif self.__resize_method == "upper_bound":
|
258 |
+
new_height = self.constrain_to_multiple_of(
|
259 |
+
scale_height * height, max_val=self.__height
|
260 |
+
)
|
261 |
+
new_width = self.constrain_to_multiple_of(
|
262 |
+
scale_width * width, max_val=self.__width
|
263 |
+
)
|
264 |
+
elif self.__resize_method == "minimal":
|
265 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
266 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
267 |
+
else:
|
268 |
+
raise ValueError(
|
269 |
+
f"resize_method {self.__resize_method} not implemented")
|
270 |
+
|
271 |
+
return (new_width, new_height)
|
272 |
+
|
273 |
+
def make_letter_box(self, sample):
|
274 |
+
top = bottom = (self.__height - sample.shape[0]) // 2
|
275 |
+
left = right = (self.__width - sample.shape[1]) // 2
|
276 |
+
sample = cv2.copyMakeBorder(
|
277 |
+
sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0)
|
278 |
+
return sample
|
279 |
+
|
280 |
+
def __call__(self, sample):
|
281 |
+
width, height = self.get_size(
|
282 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
283 |
+
)
|
284 |
+
|
285 |
+
# resize sample
|
286 |
+
sample["image"] = cv2.resize(
|
287 |
+
sample["image"],
|
288 |
+
(width, height),
|
289 |
+
interpolation=self.__image_interpolation_method,
|
290 |
+
)
|
291 |
+
|
292 |
+
if self.__letter_box:
|
293 |
+
sample["image"] = self.make_letter_box(sample["image"])
|
294 |
+
|
295 |
+
if self.__resize_target:
|
296 |
+
if "disparity" in sample:
|
297 |
+
sample["disparity"] = cv2.resize(
|
298 |
+
sample["disparity"],
|
299 |
+
(width, height),
|
300 |
+
interpolation=cv2.INTER_NEAREST,
|
301 |
+
)
|
302 |
+
|
303 |
+
if self.__letter_box:
|
304 |
+
sample["disparity"] = self.make_letter_box(
|
305 |
+
sample["disparity"])
|
306 |
+
|
307 |
+
if "depth" in sample:
|
308 |
+
sample["depth"] = cv2.resize(
|
309 |
+
sample["depth"], (width,
|
310 |
+
height), interpolation=cv2.INTER_NEAREST
|
311 |
+
)
|
312 |
+
|
313 |
+
if self.__letter_box:
|
314 |
+
sample["depth"] = self.make_letter_box(sample["depth"])
|
315 |
+
|
316 |
+
sample["mask"] = cv2.resize(
|
317 |
+
sample["mask"].astype(np.float32),
|
318 |
+
(width, height),
|
319 |
+
interpolation=cv2.INTER_NEAREST,
|
320 |
+
)
|
321 |
+
|
322 |
+
if self.__letter_box:
|
323 |
+
sample["mask"] = self.make_letter_box(sample["mask"])
|
324 |
+
|
325 |
+
sample["mask"] = sample["mask"].astype(bool)
|
326 |
+
|
327 |
+
return sample
|
328 |
+
|
329 |
+
|
330 |
+
class ResizeFixed(object):
|
331 |
+
def __init__(self, size):
|
332 |
+
self.__size = size
|
333 |
+
|
334 |
+
def __call__(self, sample):
|
335 |
+
sample["image"] = cv2.resize(
|
336 |
+
sample["image"], self.__size[::-1], interpolation=cv2.INTER_LINEAR
|
337 |
+
)
|
338 |
+
|
339 |
+
sample["disparity"] = cv2.resize(
|
340 |
+
sample["disparity"], self.__size[::-
|
341 |
+
1], interpolation=cv2.INTER_NEAREST
|
342 |
+
)
|
343 |
+
|
344 |
+
sample["mask"] = cv2.resize(
|
345 |
+
sample["mask"].astype(np.float32),
|
346 |
+
self.__size[::-1],
|
347 |
+
interpolation=cv2.INTER_NEAREST,
|
348 |
+
)
|
349 |
+
sample["mask"] = sample["mask"].astype(bool)
|
350 |
+
|
351 |
+
return sample
|
352 |
+
|
353 |
+
|
354 |
+
class Rescale(object):
|
355 |
+
"""Rescale target values to the interval [0, max_val].
|
356 |
+
If input is constant, values are set to max_val / 2.
|
357 |
+
"""
|
358 |
+
|
359 |
+
def __init__(self, max_val=1.0, use_mask=True):
|
360 |
+
"""Init.
|
361 |
+
|
362 |
+
Args:
|
363 |
+
max_val (float, optional): Max output value. Defaults to 1.0.
|
364 |
+
use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True.
|
365 |
+
"""
|
366 |
+
self.__max_val = max_val
|
367 |
+
self.__use_mask = use_mask
|
368 |
+
|
369 |
+
def __call__(self, sample):
|
370 |
+
disp = sample["disparity"]
|
371 |
+
|
372 |
+
if self.__use_mask:
|
373 |
+
mask = sample["mask"]
|
374 |
+
else:
|
375 |
+
mask = np.ones_like(disp, dtype=np.bool)
|
376 |
+
|
377 |
+
if np.sum(mask) == 0:
|
378 |
+
return sample
|
379 |
+
|
380 |
+
min_val = np.min(disp[mask])
|
381 |
+
max_val = np.max(disp[mask])
|
382 |
+
|
383 |
+
if max_val > min_val:
|
384 |
+
sample["disparity"][mask] = (
|
385 |
+
(disp[mask] - min_val) / (max_val - min_val) * self.__max_val
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
sample["disparity"][mask] = np.ones_like(
|
389 |
+
disp[mask]) * self.__max_val / 2.0
|
390 |
+
|
391 |
+
return sample
|
392 |
+
|
393 |
+
|
394 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
395 |
+
class NormalizeImage(object):
|
396 |
+
"""Normlize image by given mean and std.
|
397 |
+
"""
|
398 |
+
|
399 |
+
def __init__(self, mean, std):
|
400 |
+
self.__mean = mean
|
401 |
+
self.__std = std
|
402 |
+
|
403 |
+
def __call__(self, sample):
|
404 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
405 |
+
|
406 |
+
return sample
|
407 |
+
|
408 |
+
|
409 |
+
class DepthToDisparity(object):
|
410 |
+
"""Convert depth to disparity. Removes depth from sample.
|
411 |
+
"""
|
412 |
+
|
413 |
+
def __init__(self, eps=1e-4):
|
414 |
+
self.__eps = eps
|
415 |
+
|
416 |
+
def __call__(self, sample):
|
417 |
+
assert "depth" in sample
|
418 |
+
|
419 |
+
sample["mask"][sample["depth"] < self.__eps] = False
|
420 |
+
|
421 |
+
sample["disparity"] = np.zeros_like(sample["depth"])
|
422 |
+
sample["disparity"][sample["depth"] >= self.__eps] = (
|
423 |
+
1.0 / sample["depth"][sample["depth"] >= self.__eps]
|
424 |
+
)
|
425 |
+
|
426 |
+
del sample["depth"]
|
427 |
+
|
428 |
+
return sample
|
429 |
+
|
430 |
+
|
431 |
+
class DisparityToDepth(object):
|
432 |
+
"""Convert disparity to depth. Removes disparity from sample.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def __init__(self, eps=1e-4):
|
436 |
+
self.__eps = eps
|
437 |
+
|
438 |
+
def __call__(self, sample):
|
439 |
+
assert "disparity" in sample
|
440 |
+
|
441 |
+
disp = np.abs(sample["disparity"])
|
442 |
+
sample["mask"][disp < self.__eps] = False
|
443 |
+
|
444 |
+
# print(sample["disparity"])
|
445 |
+
# print(sample["mask"].sum())
|
446 |
+
# exit()
|
447 |
+
|
448 |
+
sample["depth"] = np.zeros_like(disp)
|
449 |
+
sample["depth"][disp >= self.__eps] = (
|
450 |
+
1.0 / disp[disp >= self.__eps]
|
451 |
+
)
|
452 |
+
|
453 |
+
del sample["disparity"]
|
454 |
+
|
455 |
+
return sample
|
456 |
+
|
457 |
+
|
458 |
+
class PrepareForNet(object):
|
459 |
+
"""Prepare sample for usage as network input.
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(self):
|
463 |
+
pass
|
464 |
+
|
465 |
+
def __call__(self, sample):
|
466 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
467 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
468 |
+
|
469 |
+
if "mask" in sample:
|
470 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
471 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
472 |
+
|
473 |
+
if "disparity" in sample:
|
474 |
+
disparity = sample["disparity"].astype(np.float32)
|
475 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
476 |
+
|
477 |
+
if "depth" in sample:
|
478 |
+
depth = sample["depth"].astype(np.float32)
|
479 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
480 |
+
|
481 |
+
return sample
|
zoedepth/data/vkitti.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from torch.utils.data import Dataset, DataLoader
|
27 |
+
from torchvision import transforms
|
28 |
+
import os
|
29 |
+
|
30 |
+
from PIL import Image
|
31 |
+
import numpy as np
|
32 |
+
import cv2
|
33 |
+
|
34 |
+
|
35 |
+
class ToTensor(object):
|
36 |
+
def __init__(self):
|
37 |
+
self.normalize = transforms.Normalize(
|
38 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
39 |
+
# self.resize = transforms.Resize((375, 1242))
|
40 |
+
|
41 |
+
def __call__(self, sample):
|
42 |
+
image, depth = sample['image'], sample['depth']
|
43 |
+
|
44 |
+
image = self.to_tensor(image)
|
45 |
+
image = self.normalize(image)
|
46 |
+
depth = self.to_tensor(depth)
|
47 |
+
|
48 |
+
# image = self.resize(image)
|
49 |
+
|
50 |
+
return {'image': image, 'depth': depth, 'dataset': "vkitti"}
|
51 |
+
|
52 |
+
def to_tensor(self, pic):
|
53 |
+
|
54 |
+
if isinstance(pic, np.ndarray):
|
55 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
56 |
+
return img
|
57 |
+
|
58 |
+
# # handle PIL Image
|
59 |
+
if pic.mode == 'I':
|
60 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
61 |
+
elif pic.mode == 'I;16':
|
62 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
63 |
+
else:
|
64 |
+
img = torch.ByteTensor(
|
65 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
66 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
67 |
+
if pic.mode == 'YCbCr':
|
68 |
+
nchannel = 3
|
69 |
+
elif pic.mode == 'I;16':
|
70 |
+
nchannel = 1
|
71 |
+
else:
|
72 |
+
nchannel = len(pic.mode)
|
73 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
74 |
+
|
75 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
76 |
+
if isinstance(img, torch.ByteTensor):
|
77 |
+
return img.float()
|
78 |
+
else:
|
79 |
+
return img
|
80 |
+
|
81 |
+
|
82 |
+
class VKITTI(Dataset):
|
83 |
+
def __init__(self, data_dir_root, do_kb_crop=True):
|
84 |
+
import glob
|
85 |
+
# image paths are of the form <data_dir_root>/{HR, LR}/<scene>/{color, depth_filled}/*.png
|
86 |
+
self.image_files = glob.glob(os.path.join(
|
87 |
+
data_dir_root, "test_color", '*.png'))
|
88 |
+
self.depth_files = [r.replace("test_color", "test_depth")
|
89 |
+
for r in self.image_files]
|
90 |
+
self.do_kb_crop = True
|
91 |
+
self.transform = ToTensor()
|
92 |
+
|
93 |
+
def __getitem__(self, idx):
|
94 |
+
image_path = self.image_files[idx]
|
95 |
+
depth_path = self.depth_files[idx]
|
96 |
+
|
97 |
+
image = Image.open(image_path)
|
98 |
+
depth = Image.open(depth_path)
|
99 |
+
depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR |
|
100 |
+
cv2.IMREAD_ANYDEPTH)
|
101 |
+
print("dpeth min max", depth.min(), depth.max())
|
102 |
+
|
103 |
+
# print(np.shape(image))
|
104 |
+
# print(np.shape(depth))
|
105 |
+
|
106 |
+
# depth[depth > 8] = -1
|
107 |
+
|
108 |
+
if self.do_kb_crop and False:
|
109 |
+
height = image.height
|
110 |
+
width = image.width
|
111 |
+
top_margin = int(height - 352)
|
112 |
+
left_margin = int((width - 1216) / 2)
|
113 |
+
depth = depth.crop(
|
114 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
115 |
+
image = image.crop(
|
116 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
117 |
+
# uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216]
|
118 |
+
|
119 |
+
image = np.asarray(image, dtype=np.float32) / 255.0
|
120 |
+
# depth = np.asarray(depth, dtype=np.uint16) /1.
|
121 |
+
depth = depth[..., None]
|
122 |
+
sample = dict(image=image, depth=depth)
|
123 |
+
|
124 |
+
# return sample
|
125 |
+
sample = self.transform(sample)
|
126 |
+
|
127 |
+
if idx == 0:
|
128 |
+
print(sample["image"].shape)
|
129 |
+
|
130 |
+
return sample
|
131 |
+
|
132 |
+
def __len__(self):
|
133 |
+
return len(self.image_files)
|
134 |
+
|
135 |
+
|
136 |
+
def get_vkitti_loader(data_dir_root, batch_size=1, **kwargs):
|
137 |
+
dataset = VKITTI(data_dir_root)
|
138 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
139 |
+
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
loader = get_vkitti_loader(
|
143 |
+
data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti_test")
|
144 |
+
print("Total files", len(loader.dataset))
|
145 |
+
for i, sample in enumerate(loader):
|
146 |
+
print(sample["image"].shape)
|
147 |
+
print(sample["depth"].shape)
|
148 |
+
print(sample["dataset"])
|
149 |
+
print(sample['depth'].min(), sample['depth'].max())
|
150 |
+
if i > 5:
|
151 |
+
break
|
zoedepth/data/vkitti2.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
|
27 |
+
import cv2
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
from PIL import Image
|
31 |
+
from torch.utils.data import DataLoader, Dataset
|
32 |
+
from torchvision import transforms
|
33 |
+
|
34 |
+
|
35 |
+
class ToTensor(object):
|
36 |
+
def __init__(self):
|
37 |
+
# self.normalize = transforms.Normalize(
|
38 |
+
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
39 |
+
self.normalize = lambda x: x
|
40 |
+
# self.resize = transforms.Resize((375, 1242))
|
41 |
+
|
42 |
+
def __call__(self, sample):
|
43 |
+
image, depth = sample['image'], sample['depth']
|
44 |
+
|
45 |
+
image = self.to_tensor(image)
|
46 |
+
image = self.normalize(image)
|
47 |
+
depth = self.to_tensor(depth)
|
48 |
+
|
49 |
+
# image = self.resize(image)
|
50 |
+
|
51 |
+
return {'image': image, 'depth': depth, 'dataset': "vkitti"}
|
52 |
+
|
53 |
+
def to_tensor(self, pic):
|
54 |
+
|
55 |
+
if isinstance(pic, np.ndarray):
|
56 |
+
img = torch.from_numpy(pic.transpose((2, 0, 1)))
|
57 |
+
return img
|
58 |
+
|
59 |
+
# # handle PIL Image
|
60 |
+
if pic.mode == 'I':
|
61 |
+
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
|
62 |
+
elif pic.mode == 'I;16':
|
63 |
+
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
|
64 |
+
else:
|
65 |
+
img = torch.ByteTensor(
|
66 |
+
torch.ByteStorage.from_buffer(pic.tobytes()))
|
67 |
+
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
|
68 |
+
if pic.mode == 'YCbCr':
|
69 |
+
nchannel = 3
|
70 |
+
elif pic.mode == 'I;16':
|
71 |
+
nchannel = 1
|
72 |
+
else:
|
73 |
+
nchannel = len(pic.mode)
|
74 |
+
img = img.view(pic.size[1], pic.size[0], nchannel)
|
75 |
+
|
76 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
77 |
+
if isinstance(img, torch.ByteTensor):
|
78 |
+
return img.float()
|
79 |
+
else:
|
80 |
+
return img
|
81 |
+
|
82 |
+
|
83 |
+
class VKITTI2(Dataset):
|
84 |
+
def __init__(self, data_dir_root, do_kb_crop=True, split="test"):
|
85 |
+
import glob
|
86 |
+
|
87 |
+
# image paths are of the form <data_dir_root>/rgb/<scene>/<variant>/frames/<rgb,depth>/Camera<0,1>/rgb_{}.jpg
|
88 |
+
self.image_files = glob.glob(os.path.join(
|
89 |
+
data_dir_root, "rgb", "**", "frames", "rgb", "Camera_0", '*.jpg'), recursive=True)
|
90 |
+
self.depth_files = [r.replace("/rgb/", "/depth/").replace(
|
91 |
+
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
|
92 |
+
self.do_kb_crop = True
|
93 |
+
self.transform = ToTensor()
|
94 |
+
|
95 |
+
# If train test split is not created, then create one.
|
96 |
+
# Split is such that 8% of the frames from each scene are used for testing.
|
97 |
+
if not os.path.exists(os.path.join(data_dir_root, "train.txt")):
|
98 |
+
import random
|
99 |
+
scenes = set([os.path.basename(os.path.dirname(
|
100 |
+
os.path.dirname(os.path.dirname(f)))) for f in self.image_files])
|
101 |
+
train_files = []
|
102 |
+
test_files = []
|
103 |
+
for scene in scenes:
|
104 |
+
scene_files = [f for f in self.image_files if os.path.basename(
|
105 |
+
os.path.dirname(os.path.dirname(os.path.dirname(f)))) == scene]
|
106 |
+
random.shuffle(scene_files)
|
107 |
+
train_files.extend(scene_files[:int(len(scene_files) * 0.92)])
|
108 |
+
test_files.extend(scene_files[int(len(scene_files) * 0.92):])
|
109 |
+
with open(os.path.join(data_dir_root, "train.txt"), "w") as f:
|
110 |
+
f.write("\n".join(train_files))
|
111 |
+
with open(os.path.join(data_dir_root, "test.txt"), "w") as f:
|
112 |
+
f.write("\n".join(test_files))
|
113 |
+
|
114 |
+
if split == "train":
|
115 |
+
with open(os.path.join(data_dir_root, "train.txt"), "r") as f:
|
116 |
+
self.image_files = f.read().splitlines()
|
117 |
+
self.depth_files = [r.replace("/rgb/", "/depth/").replace(
|
118 |
+
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
|
119 |
+
elif split == "test":
|
120 |
+
with open(os.path.join(data_dir_root, "test.txt"), "r") as f:
|
121 |
+
self.image_files = f.read().splitlines()
|
122 |
+
self.depth_files = [r.replace("/rgb/", "/depth/").replace(
|
123 |
+
"rgb_", "depth_").replace(".jpg", ".png") for r in self.image_files]
|
124 |
+
|
125 |
+
def __getitem__(self, idx):
|
126 |
+
image_path = self.image_files[idx]
|
127 |
+
depth_path = self.depth_files[idx]
|
128 |
+
|
129 |
+
image = Image.open(image_path)
|
130 |
+
# depth = Image.open(depth_path)
|
131 |
+
depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR |
|
132 |
+
cv2.IMREAD_ANYDEPTH) / 100.0 # cm to m
|
133 |
+
depth = Image.fromarray(depth)
|
134 |
+
# print("dpeth min max", depth.min(), depth.max())
|
135 |
+
|
136 |
+
# print(np.shape(image))
|
137 |
+
# print(np.shape(depth))
|
138 |
+
|
139 |
+
if self.do_kb_crop:
|
140 |
+
if idx == 0:
|
141 |
+
print("Using KB input crop")
|
142 |
+
height = image.height
|
143 |
+
width = image.width
|
144 |
+
top_margin = int(height - 352)
|
145 |
+
left_margin = int((width - 1216) / 2)
|
146 |
+
depth = depth.crop(
|
147 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
148 |
+
image = image.crop(
|
149 |
+
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
|
150 |
+
# uv = uv[:, top_margin:top_margin + 352, left_margin:left_margin + 1216]
|
151 |
+
|
152 |
+
image = np.asarray(image, dtype=np.float32) / 255.0
|
153 |
+
# depth = np.asarray(depth, dtype=np.uint16) /1.
|
154 |
+
depth = np.asarray(depth, dtype=np.float32) / 1.
|
155 |
+
depth[depth > 80] = -1
|
156 |
+
|
157 |
+
depth = depth[..., None]
|
158 |
+
sample = dict(image=image, depth=depth)
|
159 |
+
|
160 |
+
# return sample
|
161 |
+
sample = self.transform(sample)
|
162 |
+
|
163 |
+
if idx == 0:
|
164 |
+
print(sample["image"].shape)
|
165 |
+
|
166 |
+
return sample
|
167 |
+
|
168 |
+
def __len__(self):
|
169 |
+
return len(self.image_files)
|
170 |
+
|
171 |
+
|
172 |
+
def get_vkitti2_loader(data_dir_root, batch_size=1, **kwargs):
|
173 |
+
dataset = VKITTI2(data_dir_root)
|
174 |
+
return DataLoader(dataset, batch_size, **kwargs)
|
175 |
+
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
loader = get_vkitti2_loader(
|
179 |
+
data_dir_root="/home/bhatsf/shortcuts/datasets/vkitti2")
|
180 |
+
print("Total files", len(loader.dataset))
|
181 |
+
for i, sample in enumerate(loader):
|
182 |
+
print(sample["image"].shape)
|
183 |
+
print(sample["depth"].shape)
|
184 |
+
print(sample["dataset"])
|
185 |
+
print(sample['depth'].min(), sample['depth'].max())
|
186 |
+
if i > 5:
|
187 |
+
break
|
zoedepth/models/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
zoedepth/models/base_models/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
zoedepth/models/base_models/midas.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
import numpy as np
|
28 |
+
from torchvision.transforms import Normalize
|
29 |
+
|
30 |
+
|
31 |
+
def denormalize(x):
|
32 |
+
"""Reverses the imagenet normalization applied to the input.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
x (torch.Tensor - shape(N,3,H,W)): input tensor
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
torch.Tensor - shape(N,3,H,W): Denormalized input
|
39 |
+
"""
|
40 |
+
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
|
41 |
+
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
|
42 |
+
return x * std + mean
|
43 |
+
|
44 |
+
def get_activation(name, bank):
|
45 |
+
def hook(model, input, output):
|
46 |
+
bank[name] = output
|
47 |
+
return hook
|
48 |
+
|
49 |
+
|
50 |
+
class Resize(object):
|
51 |
+
"""Resize sample to given size (width, height).
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
width,
|
57 |
+
height,
|
58 |
+
resize_target=True,
|
59 |
+
keep_aspect_ratio=False,
|
60 |
+
ensure_multiple_of=1,
|
61 |
+
resize_method="lower_bound",
|
62 |
+
):
|
63 |
+
"""Init.
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
print("Params passed to Resize transform:")
|
86 |
+
print("\twidth: ", width)
|
87 |
+
print("\theight: ", height)
|
88 |
+
print("\tresize_target: ", resize_target)
|
89 |
+
print("\tkeep_aspect_ratio: ", keep_aspect_ratio)
|
90 |
+
print("\tensure_multiple_of: ", ensure_multiple_of)
|
91 |
+
print("\tresize_method: ", resize_method)
|
92 |
+
|
93 |
+
self.__width = width
|
94 |
+
self.__height = height
|
95 |
+
|
96 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
97 |
+
self.__multiple_of = ensure_multiple_of
|
98 |
+
self.__resize_method = resize_method
|
99 |
+
|
100 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
101 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
if max_val is not None and y > max_val:
|
104 |
+
y = (np.floor(x / self.__multiple_of)
|
105 |
+
* self.__multiple_of).astype(int)
|
106 |
+
|
107 |
+
if y < min_val:
|
108 |
+
y = (np.ceil(x / self.__multiple_of)
|
109 |
+
* self.__multiple_of).astype(int)
|
110 |
+
|
111 |
+
return y
|
112 |
+
|
113 |
+
def get_size(self, width, height):
|
114 |
+
# determine new height and width
|
115 |
+
scale_height = self.__height / height
|
116 |
+
scale_width = self.__width / width
|
117 |
+
|
118 |
+
if self.__keep_aspect_ratio:
|
119 |
+
if self.__resize_method == "lower_bound":
|
120 |
+
# scale such that output size is lower bound
|
121 |
+
if scale_width > scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "upper_bound":
|
128 |
+
# scale such that output size is upper bound
|
129 |
+
if scale_width < scale_height:
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
elif self.__resize_method == "minimal":
|
136 |
+
# scale as least as possbile
|
137 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
138 |
+
# fit width
|
139 |
+
scale_height = scale_width
|
140 |
+
else:
|
141 |
+
# fit height
|
142 |
+
scale_width = scale_height
|
143 |
+
else:
|
144 |
+
raise ValueError(
|
145 |
+
f"resize_method {self.__resize_method} not implemented"
|
146 |
+
)
|
147 |
+
|
148 |
+
if self.__resize_method == "lower_bound":
|
149 |
+
new_height = self.constrain_to_multiple_of(
|
150 |
+
scale_height * height, min_val=self.__height
|
151 |
+
)
|
152 |
+
new_width = self.constrain_to_multiple_of(
|
153 |
+
scale_width * width, min_val=self.__width
|
154 |
+
)
|
155 |
+
elif self.__resize_method == "upper_bound":
|
156 |
+
new_height = self.constrain_to_multiple_of(
|
157 |
+
scale_height * height, max_val=self.__height
|
158 |
+
)
|
159 |
+
new_width = self.constrain_to_multiple_of(
|
160 |
+
scale_width * width, max_val=self.__width
|
161 |
+
)
|
162 |
+
elif self.__resize_method == "minimal":
|
163 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
164 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
165 |
+
else:
|
166 |
+
raise ValueError(
|
167 |
+
f"resize_method {self.__resize_method} not implemented")
|
168 |
+
|
169 |
+
return (new_width, new_height)
|
170 |
+
|
171 |
+
def __call__(self, x):
|
172 |
+
width, height = self.get_size(*x.shape[-2:][::-1])
|
173 |
+
return nn.functional.interpolate(x, (height, width), mode='bilinear', align_corners=True)
|
174 |
+
|
175 |
+
class PrepForMidas(object):
|
176 |
+
def __init__(self, resize_mode="minimal", keep_aspect_ratio=True, img_size=384, do_resize=True):
|
177 |
+
if isinstance(img_size, int):
|
178 |
+
img_size = (img_size, img_size)
|
179 |
+
net_h, net_w = img_size
|
180 |
+
self.normalization = Normalize(
|
181 |
+
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
182 |
+
self.resizer = Resize(net_w, net_h, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=32, resize_method=resize_mode) \
|
183 |
+
if do_resize else nn.Identity()
|
184 |
+
|
185 |
+
def __call__(self, x):
|
186 |
+
return self.normalization(self.resizer(x))
|
187 |
+
|
188 |
+
|
189 |
+
class MidasCore(nn.Module):
|
190 |
+
def __init__(self, midas, trainable=False, fetch_features=True, layer_names=('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1'), freeze_bn=False, keep_aspect_ratio=True,
|
191 |
+
img_size=384, **kwargs):
|
192 |
+
"""Midas Base model used for multi-scale feature extraction.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
midas (torch.nn.Module): Midas model.
|
196 |
+
trainable (bool, optional): Train midas model. Defaults to False.
|
197 |
+
fetch_features (bool, optional): Extract multi-scale features. Defaults to True.
|
198 |
+
layer_names (tuple, optional): Layers used for feature extraction. Order = (head output features, last layer features, ...decoder features). Defaults to ('out_conv', 'l4_rn', 'r4', 'r3', 'r2', 'r1').
|
199 |
+
freeze_bn (bool, optional): Freeze BatchNorm. Generally results in better finetuning performance. Defaults to False.
|
200 |
+
keep_aspect_ratio (bool, optional): Keep the aspect ratio of input images while resizing. Defaults to True.
|
201 |
+
img_size (int, tuple, optional): Input resolution. Defaults to 384.
|
202 |
+
"""
|
203 |
+
super().__init__()
|
204 |
+
self.core = midas
|
205 |
+
self.output_channels = None
|
206 |
+
self.core_out = {}
|
207 |
+
self.trainable = trainable
|
208 |
+
self.fetch_features = fetch_features
|
209 |
+
# midas.scratch.output_conv = nn.Identity()
|
210 |
+
self.handles = []
|
211 |
+
# self.layer_names = ['out_conv','l4_rn', 'r4', 'r3', 'r2', 'r1']
|
212 |
+
self.layer_names = layer_names
|
213 |
+
|
214 |
+
self.set_trainable(trainable)
|
215 |
+
self.set_fetch_features(fetch_features)
|
216 |
+
|
217 |
+
self.prep = PrepForMidas(keep_aspect_ratio=keep_aspect_ratio,
|
218 |
+
img_size=img_size, do_resize=kwargs.get('do_resize', True))
|
219 |
+
|
220 |
+
if freeze_bn:
|
221 |
+
self.freeze_bn()
|
222 |
+
|
223 |
+
def set_trainable(self, trainable):
|
224 |
+
self.trainable = trainable
|
225 |
+
if trainable:
|
226 |
+
self.unfreeze()
|
227 |
+
else:
|
228 |
+
self.freeze()
|
229 |
+
return self
|
230 |
+
|
231 |
+
def set_fetch_features(self, fetch_features):
|
232 |
+
self.fetch_features = fetch_features
|
233 |
+
if fetch_features:
|
234 |
+
if len(self.handles) == 0:
|
235 |
+
self.attach_hooks(self.core)
|
236 |
+
else:
|
237 |
+
self.remove_hooks()
|
238 |
+
return self
|
239 |
+
|
240 |
+
def freeze(self):
|
241 |
+
for p in self.parameters():
|
242 |
+
p.requires_grad = False
|
243 |
+
self.trainable = False
|
244 |
+
return self
|
245 |
+
|
246 |
+
def unfreeze(self):
|
247 |
+
for p in self.parameters():
|
248 |
+
p.requires_grad = True
|
249 |
+
self.trainable = True
|
250 |
+
return self
|
251 |
+
|
252 |
+
def freeze_bn(self):
|
253 |
+
for m in self.modules():
|
254 |
+
if isinstance(m, nn.BatchNorm2d):
|
255 |
+
m.eval()
|
256 |
+
return self
|
257 |
+
|
258 |
+
def forward(self, x, denorm=False, return_rel_depth=False):
|
259 |
+
with torch.no_grad():
|
260 |
+
if denorm:
|
261 |
+
x = denormalize(x)
|
262 |
+
x = self.prep(x)
|
263 |
+
# print("Shape after prep: ", x.shape)
|
264 |
+
|
265 |
+
with torch.set_grad_enabled(self.trainable):
|
266 |
+
|
267 |
+
# print("Input size to Midascore", x.shape)
|
268 |
+
rel_depth = self.core(x)
|
269 |
+
# print("Output from midas shape", rel_depth.shape)
|
270 |
+
if not self.fetch_features:
|
271 |
+
return rel_depth
|
272 |
+
out = [self.core_out[k] for k in self.layer_names]
|
273 |
+
|
274 |
+
if return_rel_depth:
|
275 |
+
return rel_depth, out
|
276 |
+
return out
|
277 |
+
|
278 |
+
def get_rel_pos_params(self):
|
279 |
+
for name, p in self.core.pretrained.named_parameters():
|
280 |
+
if "relative_position" in name:
|
281 |
+
yield p
|
282 |
+
|
283 |
+
def get_enc_params_except_rel_pos(self):
|
284 |
+
for name, p in self.core.pretrained.named_parameters():
|
285 |
+
if "relative_position" not in name:
|
286 |
+
yield p
|
287 |
+
|
288 |
+
def freeze_encoder(self, freeze_rel_pos=False):
|
289 |
+
if freeze_rel_pos:
|
290 |
+
for p in self.core.pretrained.parameters():
|
291 |
+
p.requires_grad = False
|
292 |
+
else:
|
293 |
+
for p in self.get_enc_params_except_rel_pos():
|
294 |
+
p.requires_grad = False
|
295 |
+
return self
|
296 |
+
|
297 |
+
def attach_hooks(self, midas):
|
298 |
+
if len(self.handles) > 0:
|
299 |
+
self.remove_hooks()
|
300 |
+
if "out_conv" in self.layer_names:
|
301 |
+
self.handles.append(list(midas.scratch.output_conv.children())[
|
302 |
+
3].register_forward_hook(get_activation("out_conv", self.core_out)))
|
303 |
+
if "r4" in self.layer_names:
|
304 |
+
self.handles.append(midas.scratch.refinenet4.register_forward_hook(
|
305 |
+
get_activation("r4", self.core_out)))
|
306 |
+
if "r3" in self.layer_names:
|
307 |
+
self.handles.append(midas.scratch.refinenet3.register_forward_hook(
|
308 |
+
get_activation("r3", self.core_out)))
|
309 |
+
if "r2" in self.layer_names:
|
310 |
+
self.handles.append(midas.scratch.refinenet2.register_forward_hook(
|
311 |
+
get_activation("r2", self.core_out)))
|
312 |
+
if "r1" in self.layer_names:
|
313 |
+
self.handles.append(midas.scratch.refinenet1.register_forward_hook(
|
314 |
+
get_activation("r1", self.core_out)))
|
315 |
+
if "l4_rn" in self.layer_names:
|
316 |
+
self.handles.append(midas.scratch.layer4_rn.register_forward_hook(
|
317 |
+
get_activation("l4_rn", self.core_out)))
|
318 |
+
|
319 |
+
return self
|
320 |
+
|
321 |
+
def remove_hooks(self):
|
322 |
+
for h in self.handles:
|
323 |
+
h.remove()
|
324 |
+
return self
|
325 |
+
|
326 |
+
def __del__(self):
|
327 |
+
self.remove_hooks()
|
328 |
+
|
329 |
+
def set_output_channels(self, model_type):
|
330 |
+
self.output_channels = MIDAS_SETTINGS[model_type]
|
331 |
+
|
332 |
+
@staticmethod
|
333 |
+
def build(midas_model_type="DPT_BEiT_L_384", train_midas=False, use_pretrained_midas=True, fetch_features=False, freeze_bn=True, force_keep_ar=False, force_reload=False, **kwargs):
|
334 |
+
if midas_model_type not in MIDAS_SETTINGS:
|
335 |
+
raise ValueError(
|
336 |
+
f"Invalid model type: {midas_model_type}. Must be one of {list(MIDAS_SETTINGS.keys())}")
|
337 |
+
if "img_size" in kwargs:
|
338 |
+
kwargs = MidasCore.parse_img_size(kwargs)
|
339 |
+
img_size = kwargs.pop("img_size", [384, 384])
|
340 |
+
print("img_size", img_size)
|
341 |
+
midas = torch.hub.load("intel-isl/MiDaS", midas_model_type,
|
342 |
+
pretrained=use_pretrained_midas, force_reload=force_reload)
|
343 |
+
kwargs.update({'keep_aspect_ratio': force_keep_ar})
|
344 |
+
midas_core = MidasCore(midas, trainable=train_midas, fetch_features=fetch_features,
|
345 |
+
freeze_bn=freeze_bn, img_size=img_size, **kwargs)
|
346 |
+
midas_core.set_output_channels(midas_model_type)
|
347 |
+
return midas_core
|
348 |
+
|
349 |
+
@staticmethod
|
350 |
+
def build_from_config(config):
|
351 |
+
return MidasCore.build(**config)
|
352 |
+
|
353 |
+
@staticmethod
|
354 |
+
def parse_img_size(config):
|
355 |
+
assert 'img_size' in config
|
356 |
+
if isinstance(config['img_size'], str):
|
357 |
+
assert "," in config['img_size'], "img_size should be a string with comma separated img_size=H,W"
|
358 |
+
config['img_size'] = list(map(int, config['img_size'].split(",")))
|
359 |
+
assert len(
|
360 |
+
config['img_size']) == 2, "img_size should be a string with comma separated img_size=H,W"
|
361 |
+
elif isinstance(config['img_size'], int):
|
362 |
+
config['img_size'] = [config['img_size'], config['img_size']]
|
363 |
+
else:
|
364 |
+
assert isinstance(config['img_size'], list) and len(
|
365 |
+
config['img_size']) == 2, "img_size should be a list of H,W"
|
366 |
+
return config
|
367 |
+
|
368 |
+
|
369 |
+
nchannels2models = {
|
370 |
+
tuple([256]*5): ["DPT_BEiT_L_384", "DPT_BEiT_L_512", "DPT_BEiT_B_384", "DPT_SwinV2_L_384", "DPT_SwinV2_B_384", "DPT_SwinV2_T_256", "DPT_Large", "DPT_Hybrid"],
|
371 |
+
(512, 256, 128, 64, 64): ["MiDaS_small"]
|
372 |
+
}
|
373 |
+
|
374 |
+
# Model name to number of output channels
|
375 |
+
MIDAS_SETTINGS = {m: k for k, v in nchannels2models.items()
|
376 |
+
for m in v
|
377 |
+
}
|
zoedepth/models/builder.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
from importlib import import_module
|
26 |
+
from zoedepth.models.depth_model import DepthModel
|
27 |
+
|
28 |
+
def build_model(config) -> DepthModel:
|
29 |
+
"""Builds a model from a config. The model is specified by the model name and version in the config. The model is then constructed using the build_from_config function of the model interface.
|
30 |
+
This function should be used to construct models for training and evaluation.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
config (dict): Config dict. Config is constructed in utils/config.py. Each model has its own config file(s) saved in its root model folder.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
torch.nn.Module: Model corresponding to name and version as specified in config
|
37 |
+
"""
|
38 |
+
module_name = f"zoedepth.models.{config.model}"
|
39 |
+
try:
|
40 |
+
module = import_module(module_name)
|
41 |
+
except ModuleNotFoundError as e:
|
42 |
+
# print the original error message
|
43 |
+
print(e)
|
44 |
+
raise ValueError(
|
45 |
+
f"Model {config.model} not found. Refer above error for details.") from e
|
46 |
+
try:
|
47 |
+
get_version = getattr(module, "get_version")
|
48 |
+
except AttributeError as e:
|
49 |
+
raise ValueError(
|
50 |
+
f"Model {config.model} has no get_version function.") from e
|
51 |
+
return get_version(config.version_name).build_from_config(config)
|
zoedepth/models/depth_model.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
import torch.nn.functional as F
|
29 |
+
from torchvision import transforms
|
30 |
+
import PIL.Image
|
31 |
+
from PIL import Image
|
32 |
+
from typing import Union
|
33 |
+
|
34 |
+
|
35 |
+
class DepthModel(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super().__init__()
|
38 |
+
self.device = 'cpu'
|
39 |
+
|
40 |
+
def to(self, device) -> nn.Module:
|
41 |
+
self.device = device
|
42 |
+
return super().to(device)
|
43 |
+
|
44 |
+
def forward(self, x, *args, **kwargs):
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
def _infer(self, x: torch.Tensor):
|
48 |
+
"""
|
49 |
+
Inference interface for the model
|
50 |
+
Args:
|
51 |
+
x (torch.Tensor): input tensor of shape (b, c, h, w)
|
52 |
+
Returns:
|
53 |
+
torch.Tensor: output tensor of shape (b, 1, h, w)
|
54 |
+
"""
|
55 |
+
return self(x)['metric_depth']
|
56 |
+
|
57 |
+
def _infer_with_pad_aug(self, x: torch.Tensor, pad_input: bool=True, fh: float=3, fw: float=3, upsampling_mode: str='bicubic', padding_mode="reflect", **kwargs) -> torch.Tensor:
|
58 |
+
"""
|
59 |
+
Inference interface for the model with padding augmentation
|
60 |
+
Padding augmentation fixes the boundary artifacts in the output depth map.
|
61 |
+
Boundary artifacts are sometimes caused by the fact that the model is trained on NYU raw dataset which has a black or white border around the image.
|
62 |
+
This augmentation pads the input image and crops the prediction back to the original size / view.
|
63 |
+
|
64 |
+
Note: This augmentation is not required for the models trained with 'avoid_boundary'=True.
|
65 |
+
Args:
|
66 |
+
x (torch.Tensor): input tensor of shape (b, c, h, w)
|
67 |
+
pad_input (bool, optional): whether to pad the input or not. Defaults to True.
|
68 |
+
fh (float, optional): height padding factor. The padding is calculated as sqrt(h/2) * fh. Defaults to 3.
|
69 |
+
fw (float, optional): width padding factor. The padding is calculated as sqrt(w/2) * fw. Defaults to 3.
|
70 |
+
upsampling_mode (str, optional): upsampling mode. Defaults to 'bicubic'.
|
71 |
+
padding_mode (str, optional): padding mode. Defaults to "reflect".
|
72 |
+
Returns:
|
73 |
+
torch.Tensor: output tensor of shape (b, 1, h, w)
|
74 |
+
"""
|
75 |
+
# assert x is nchw and c = 3
|
76 |
+
assert x.dim() == 4, "x must be 4 dimensional, got {}".format(x.dim())
|
77 |
+
assert x.shape[1] == 3, "x must have 3 channels, got {}".format(x.shape[1])
|
78 |
+
|
79 |
+
if pad_input:
|
80 |
+
assert fh > 0 or fw > 0, "atlease one of fh and fw must be greater than 0"
|
81 |
+
pad_h = int(np.sqrt(x.shape[2]/2) * fh)
|
82 |
+
pad_w = int(np.sqrt(x.shape[3]/2) * fw)
|
83 |
+
padding = [pad_w, pad_w]
|
84 |
+
if pad_h > 0:
|
85 |
+
padding += [pad_h, pad_h]
|
86 |
+
|
87 |
+
x = F.pad(x, padding, mode=padding_mode, **kwargs)
|
88 |
+
out = self._infer(x)
|
89 |
+
if out.shape[-2:] != x.shape[-2:]:
|
90 |
+
out = F.interpolate(out, size=(x.shape[2], x.shape[3]), mode=upsampling_mode, align_corners=False)
|
91 |
+
if pad_input:
|
92 |
+
# crop to the original size, handling the case where pad_h and pad_w is 0
|
93 |
+
if pad_h > 0:
|
94 |
+
out = out[:, :, pad_h:-pad_h,:]
|
95 |
+
if pad_w > 0:
|
96 |
+
out = out[:, :, :, pad_w:-pad_w]
|
97 |
+
return out
|
98 |
+
|
99 |
+
def infer_with_flip_aug(self, x, pad_input: bool=True, **kwargs) -> torch.Tensor:
|
100 |
+
"""
|
101 |
+
Inference interface for the model with horizontal flip augmentation
|
102 |
+
Horizontal flip augmentation improves the accuracy of the model by averaging the output of the model with and without horizontal flip.
|
103 |
+
Args:
|
104 |
+
x (torch.Tensor): input tensor of shape (b, c, h, w)
|
105 |
+
pad_input (bool, optional): whether to use padding augmentation. Defaults to True.
|
106 |
+
Returns:
|
107 |
+
torch.Tensor: output tensor of shape (b, 1, h, w)
|
108 |
+
"""
|
109 |
+
# infer with horizontal flip and average
|
110 |
+
out = self._infer_with_pad_aug(x, pad_input=pad_input, **kwargs)
|
111 |
+
out_flip = self._infer_with_pad_aug(torch.flip(x, dims=[3]), pad_input=pad_input, **kwargs)
|
112 |
+
out = (out + torch.flip(out_flip, dims=[3])) / 2
|
113 |
+
return out
|
114 |
+
|
115 |
+
def infer(self, x, pad_input: bool=True, with_flip_aug: bool=True, **kwargs) -> torch.Tensor:
|
116 |
+
"""
|
117 |
+
Inference interface for the model
|
118 |
+
Args:
|
119 |
+
x (torch.Tensor): input tensor of shape (b, c, h, w)
|
120 |
+
pad_input (bool, optional): whether to use padding augmentation. Defaults to True.
|
121 |
+
with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True.
|
122 |
+
Returns:
|
123 |
+
torch.Tensor: output tensor of shape (b, 1, h, w)
|
124 |
+
"""
|
125 |
+
if with_flip_aug:
|
126 |
+
return self.infer_with_flip_aug(x, pad_input=pad_input, **kwargs)
|
127 |
+
else:
|
128 |
+
return self._infer_with_pad_aug(x, pad_input=pad_input, **kwargs)
|
129 |
+
|
130 |
+
@torch.no_grad()
|
131 |
+
def infer_pil(self, pil_img, pad_input: bool=True, with_flip_aug: bool=True, output_type: str="numpy", **kwargs) -> Union[np.ndarray, PIL.Image.Image, torch.Tensor]:
|
132 |
+
"""
|
133 |
+
Inference interface for the model for PIL image
|
134 |
+
Args:
|
135 |
+
pil_img (PIL.Image.Image): input PIL image
|
136 |
+
pad_input (bool, optional): whether to use padding augmentation. Defaults to True.
|
137 |
+
with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True.
|
138 |
+
output_type (str, optional): output type. Supported values are 'numpy', 'pil' and 'tensor'. Defaults to "numpy".
|
139 |
+
"""
|
140 |
+
x = transforms.ToTensor()(pil_img).unsqueeze(0).to(self.device)
|
141 |
+
out_tensor = self.infer(x, pad_input=pad_input, with_flip_aug=with_flip_aug, **kwargs)
|
142 |
+
if output_type == "numpy":
|
143 |
+
return out_tensor.squeeze().cpu().numpy()
|
144 |
+
elif output_type == "pil":
|
145 |
+
# uint16 is required for depth pil image
|
146 |
+
out_16bit_numpy = (out_tensor.squeeze().cpu().numpy()*256).astype(np.uint16)
|
147 |
+
return Image.fromarray(out_16bit_numpy)
|
148 |
+
elif output_type == "tensor":
|
149 |
+
return out_tensor.squeeze().cpu()
|
150 |
+
else:
|
151 |
+
raise ValueError(f"output_type {output_type} not supported. Supported values are 'numpy', 'pil' and 'tensor'")
|
152 |
+
|
zoedepth/models/layers/attractor.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
|
28 |
+
|
29 |
+
@torch.jit.script
|
30 |
+
def exp_attractor(dx, alpha: float = 300, gamma: int = 2):
|
31 |
+
"""Exponential attractor: dc = exp(-alpha*|dx|^gamma) * dx , where dx = a - c, a = attractor point, c = bin center, dc = shift in bin centermmary for exp_attractor
|
32 |
+
|
33 |
+
Args:
|
34 |
+
dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center.
|
35 |
+
alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300.
|
36 |
+
gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
torch.Tensor : Delta shifts - dc; New bin centers = Old bin centers + dc
|
40 |
+
"""
|
41 |
+
return torch.exp(-alpha*(torch.abs(dx)**gamma)) * (dx)
|
42 |
+
|
43 |
+
|
44 |
+
@torch.jit.script
|
45 |
+
def inv_attractor(dx, alpha: float = 300, gamma: int = 2):
|
46 |
+
"""Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center
|
47 |
+
This is the default one according to the accompanying paper.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center.
|
51 |
+
alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300.
|
52 |
+
gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc
|
56 |
+
"""
|
57 |
+
return dx.div(1+alpha*dx.pow(gamma))
|
58 |
+
|
59 |
+
|
60 |
+
class AttractorLayer(nn.Module):
|
61 |
+
def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10,
|
62 |
+
alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False):
|
63 |
+
"""
|
64 |
+
Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth)
|
65 |
+
"""
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
self.n_attractors = n_attractors
|
69 |
+
self.n_bins = n_bins
|
70 |
+
self.min_depth = min_depth
|
71 |
+
self.max_depth = max_depth
|
72 |
+
self.alpha = alpha
|
73 |
+
self.gamma = gamma
|
74 |
+
self.kind = kind
|
75 |
+
self.attractor_type = attractor_type
|
76 |
+
self.memory_efficient = memory_efficient
|
77 |
+
|
78 |
+
self._net = nn.Sequential(
|
79 |
+
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
|
80 |
+
nn.ReLU(inplace=True),
|
81 |
+
nn.Conv2d(mlp_dim, n_attractors*2, 1, 1, 0), # x2 for linear norm
|
82 |
+
nn.ReLU(inplace=True)
|
83 |
+
)
|
84 |
+
|
85 |
+
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
|
86 |
+
"""
|
87 |
+
Args:
|
88 |
+
x (torch.Tensor) : feature block; shape - n, c, h, w
|
89 |
+
b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
tuple(torch.Tensor,torch.Tensor) : new bin centers normed and scaled; shape - n, nbins, h, w
|
93 |
+
"""
|
94 |
+
if prev_b_embedding is not None:
|
95 |
+
if interpolate:
|
96 |
+
prev_b_embedding = nn.functional.interpolate(
|
97 |
+
prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
|
98 |
+
x = x + prev_b_embedding
|
99 |
+
|
100 |
+
A = self._net(x)
|
101 |
+
eps = 1e-3
|
102 |
+
A = A + eps
|
103 |
+
n, c, h, w = A.shape
|
104 |
+
A = A.view(n, self.n_attractors, 2, h, w)
|
105 |
+
A_normed = A / A.sum(dim=2, keepdim=True) # n, a, 2, h, w
|
106 |
+
A_normed = A[:, :, 0, ...] # n, na, h, w
|
107 |
+
|
108 |
+
b_prev = nn.functional.interpolate(
|
109 |
+
b_prev, (h, w), mode='bilinear', align_corners=True)
|
110 |
+
b_centers = b_prev
|
111 |
+
|
112 |
+
if self.attractor_type == 'exp':
|
113 |
+
dist = exp_attractor
|
114 |
+
else:
|
115 |
+
dist = inv_attractor
|
116 |
+
|
117 |
+
if not self.memory_efficient:
|
118 |
+
func = {'mean': torch.mean, 'sum': torch.sum}[self.kind]
|
119 |
+
# .shape N, nbins, h, w
|
120 |
+
delta_c = func(dist(A_normed.unsqueeze(
|
121 |
+
2) - b_centers.unsqueeze(1)), dim=1)
|
122 |
+
else:
|
123 |
+
delta_c = torch.zeros_like(b_centers, device=b_centers.device)
|
124 |
+
for i in range(self.n_attractors):
|
125 |
+
# .shape N, nbins, h, w
|
126 |
+
delta_c += dist(A_normed[:, i, ...].unsqueeze(1) - b_centers)
|
127 |
+
|
128 |
+
if self.kind == 'mean':
|
129 |
+
delta_c = delta_c / self.n_attractors
|
130 |
+
|
131 |
+
b_new_centers = b_centers + delta_c
|
132 |
+
B_centers = (self.max_depth - self.min_depth) * \
|
133 |
+
b_new_centers + self.min_depth
|
134 |
+
B_centers, _ = torch.sort(B_centers, dim=1)
|
135 |
+
B_centers = torch.clip(B_centers, self.min_depth, self.max_depth)
|
136 |
+
return b_new_centers, B_centers
|
137 |
+
|
138 |
+
|
139 |
+
class AttractorLayerUnnormed(nn.Module):
|
140 |
+
def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10,
|
141 |
+
alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False):
|
142 |
+
"""
|
143 |
+
Attractor layer for bin centers. Bin centers are unbounded
|
144 |
+
"""
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
self.n_attractors = n_attractors
|
148 |
+
self.n_bins = n_bins
|
149 |
+
self.min_depth = min_depth
|
150 |
+
self.max_depth = max_depth
|
151 |
+
self.alpha = alpha
|
152 |
+
self.gamma = gamma
|
153 |
+
self.kind = kind
|
154 |
+
self.attractor_type = attractor_type
|
155 |
+
self.memory_efficient = memory_efficient
|
156 |
+
|
157 |
+
self._net = nn.Sequential(
|
158 |
+
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
|
159 |
+
nn.ReLU(inplace=True),
|
160 |
+
nn.Conv2d(mlp_dim, n_attractors, 1, 1, 0),
|
161 |
+
nn.Softplus()
|
162 |
+
)
|
163 |
+
|
164 |
+
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
|
165 |
+
"""
|
166 |
+
Args:
|
167 |
+
x (torch.Tensor) : feature block; shape - n, c, h, w
|
168 |
+
b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
tuple(torch.Tensor,torch.Tensor) : new bin centers unbounded; shape - n, nbins, h, w. Two outputs just to keep the API consistent with the normed version
|
172 |
+
"""
|
173 |
+
if prev_b_embedding is not None:
|
174 |
+
if interpolate:
|
175 |
+
prev_b_embedding = nn.functional.interpolate(
|
176 |
+
prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
|
177 |
+
x = x + prev_b_embedding
|
178 |
+
|
179 |
+
A = self._net(x)
|
180 |
+
n, c, h, w = A.shape
|
181 |
+
|
182 |
+
b_prev = nn.functional.interpolate(
|
183 |
+
b_prev, (h, w), mode='bilinear', align_corners=True)
|
184 |
+
b_centers = b_prev
|
185 |
+
|
186 |
+
if self.attractor_type == 'exp':
|
187 |
+
dist = exp_attractor
|
188 |
+
else:
|
189 |
+
dist = inv_attractor
|
190 |
+
|
191 |
+
if not self.memory_efficient:
|
192 |
+
func = {'mean': torch.mean, 'sum': torch.sum}[self.kind]
|
193 |
+
# .shape N, nbins, h, w
|
194 |
+
delta_c = func(
|
195 |
+
dist(A.unsqueeze(2) - b_centers.unsqueeze(1)), dim=1)
|
196 |
+
else:
|
197 |
+
delta_c = torch.zeros_like(b_centers, device=b_centers.device)
|
198 |
+
for i in range(self.n_attractors):
|
199 |
+
delta_c += dist(A[:, i, ...].unsqueeze(1) -
|
200 |
+
b_centers) # .shape N, nbins, h, w
|
201 |
+
|
202 |
+
if self.kind == 'mean':
|
203 |
+
delta_c = delta_c / self.n_attractors
|
204 |
+
|
205 |
+
b_new_centers = b_centers + delta_c
|
206 |
+
B_centers = b_new_centers
|
207 |
+
|
208 |
+
return b_new_centers, B_centers
|
zoedepth/models/layers/dist_layers.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
|
28 |
+
|
29 |
+
def log_binom(n, k, eps=1e-7):
|
30 |
+
""" log(nCk) using stirling approximation """
|
31 |
+
n = n + eps
|
32 |
+
k = k + eps
|
33 |
+
return n * torch.log(n) - k * torch.log(k) - (n-k) * torch.log(n-k+eps)
|
34 |
+
|
35 |
+
|
36 |
+
class LogBinomial(nn.Module):
|
37 |
+
def __init__(self, n_classes=256, act=torch.softmax):
|
38 |
+
"""Compute log binomial distribution for n_classes
|
39 |
+
|
40 |
+
Args:
|
41 |
+
n_classes (int, optional): number of output classes. Defaults to 256.
|
42 |
+
"""
|
43 |
+
super().__init__()
|
44 |
+
self.K = n_classes
|
45 |
+
self.act = act
|
46 |
+
self.register_buffer('k_idx', torch.arange(
|
47 |
+
0, n_classes).view(1, -1, 1, 1))
|
48 |
+
self.register_buffer('K_minus_1', torch.Tensor(
|
49 |
+
[self.K-1]).view(1, -1, 1, 1))
|
50 |
+
|
51 |
+
def forward(self, x, t=1., eps=1e-4):
|
52 |
+
"""Compute log binomial distribution for x
|
53 |
+
|
54 |
+
Args:
|
55 |
+
x (torch.Tensor - NCHW): probabilities
|
56 |
+
t (float, torch.Tensor - NCHW, optional): Temperature of distribution. Defaults to 1..
|
57 |
+
eps (float, optional): Small number for numerical stability. Defaults to 1e-4.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
torch.Tensor -NCHW: log binomial distribution logbinomial(p;t)
|
61 |
+
"""
|
62 |
+
if x.ndim == 3:
|
63 |
+
x = x.unsqueeze(1) # make it nchw
|
64 |
+
|
65 |
+
one_minus_x = torch.clamp(1 - x, eps, 1)
|
66 |
+
x = torch.clamp(x, eps, 1)
|
67 |
+
y = log_binom(self.K_minus_1, self.k_idx) + self.k_idx * \
|
68 |
+
torch.log(x) + (self.K - 1 - self.k_idx) * torch.log(one_minus_x)
|
69 |
+
return self.act(y/t, dim=1)
|
70 |
+
|
71 |
+
|
72 |
+
class ConditionalLogBinomial(nn.Module):
|
73 |
+
def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax):
|
74 |
+
"""Conditional Log Binomial distribution
|
75 |
+
|
76 |
+
Args:
|
77 |
+
in_features (int): number of input channels in main feature
|
78 |
+
condition_dim (int): number of input channels in condition feature
|
79 |
+
n_classes (int, optional): Number of classes. Defaults to 256.
|
80 |
+
bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2.
|
81 |
+
p_eps (float, optional): small eps value. Defaults to 1e-4.
|
82 |
+
max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50.
|
83 |
+
min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
|
84 |
+
"""
|
85 |
+
super().__init__()
|
86 |
+
self.p_eps = p_eps
|
87 |
+
self.max_temp = max_temp
|
88 |
+
self.min_temp = min_temp
|
89 |
+
self.log_binomial_transform = LogBinomial(n_classes, act=act)
|
90 |
+
bottleneck = (in_features + condition_dim) // bottleneck_factor
|
91 |
+
self.mlp = nn.Sequential(
|
92 |
+
nn.Conv2d(in_features + condition_dim, bottleneck,
|
93 |
+
kernel_size=1, stride=1, padding=0),
|
94 |
+
nn.GELU(),
|
95 |
+
# 2 for p linear norm, 2 for t linear norm
|
96 |
+
nn.Conv2d(bottleneck, 2+2, kernel_size=1, stride=1, padding=0),
|
97 |
+
nn.Softplus()
|
98 |
+
)
|
99 |
+
|
100 |
+
def forward(self, x, cond):
|
101 |
+
"""Forward pass
|
102 |
+
|
103 |
+
Args:
|
104 |
+
x (torch.Tensor - NCHW): Main feature
|
105 |
+
cond (torch.Tensor - NCHW): condition feature
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
torch.Tensor: Output log binomial distribution
|
109 |
+
"""
|
110 |
+
pt = self.mlp(torch.concat((x, cond), dim=1))
|
111 |
+
p, t = pt[:, :2, ...], pt[:, 2:, ...]
|
112 |
+
|
113 |
+
p = p + self.p_eps
|
114 |
+
p = p[:, 0, ...] / (p[:, 0, ...] + p[:, 1, ...])
|
115 |
+
|
116 |
+
t = t + self.p_eps
|
117 |
+
t = t[:, 0, ...] / (t[:, 0, ...] + t[:, 1, ...])
|
118 |
+
t = t.unsqueeze(1)
|
119 |
+
t = (self.max_temp - self.min_temp) * t + self.min_temp
|
120 |
+
|
121 |
+
return self.log_binomial_transform(p, t)
|
zoedepth/models/layers/localbins_layers.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
|
28 |
+
|
29 |
+
class SeedBinRegressor(nn.Module):
|
30 |
+
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10):
|
31 |
+
"""Bin center regressor network. Bin centers are bounded on (min_depth, max_depth) interval.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
in_features (int): input channels
|
35 |
+
n_bins (int, optional): Number of bin centers. Defaults to 16.
|
36 |
+
mlp_dim (int, optional): Hidden dimension. Defaults to 256.
|
37 |
+
min_depth (float, optional): Min depth value. Defaults to 1e-3.
|
38 |
+
max_depth (float, optional): Max depth value. Defaults to 10.
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
self.version = "1_1"
|
42 |
+
self.min_depth = min_depth
|
43 |
+
self.max_depth = max_depth
|
44 |
+
|
45 |
+
self._net = nn.Sequential(
|
46 |
+
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
|
47 |
+
nn.ReLU(inplace=True),
|
48 |
+
nn.Conv2d(mlp_dim, n_bins, 1, 1, 0),
|
49 |
+
nn.ReLU(inplace=True)
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
"""
|
54 |
+
Returns tensor of bin_width vectors (centers). One vector b for every pixel
|
55 |
+
"""
|
56 |
+
B = self._net(x)
|
57 |
+
eps = 1e-3
|
58 |
+
B = B + eps
|
59 |
+
B_widths_normed = B / B.sum(dim=1, keepdim=True)
|
60 |
+
B_widths = (self.max_depth - self.min_depth) * \
|
61 |
+
B_widths_normed # .shape NCHW
|
62 |
+
# pad has the form (left, right, top, bottom, front, back)
|
63 |
+
B_widths = nn.functional.pad(
|
64 |
+
B_widths, (0, 0, 0, 0, 1, 0), mode='constant', value=self.min_depth)
|
65 |
+
B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW
|
66 |
+
|
67 |
+
B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:, 1:, ...])
|
68 |
+
return B_widths_normed, B_centers
|
69 |
+
|
70 |
+
|
71 |
+
class SeedBinRegressorUnnormed(nn.Module):
|
72 |
+
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10):
|
73 |
+
"""Bin center regressor network. Bin centers are unbounded
|
74 |
+
|
75 |
+
Args:
|
76 |
+
in_features (int): input channels
|
77 |
+
n_bins (int, optional): Number of bin centers. Defaults to 16.
|
78 |
+
mlp_dim (int, optional): Hidden dimension. Defaults to 256.
|
79 |
+
min_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
|
80 |
+
max_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
|
81 |
+
"""
|
82 |
+
super().__init__()
|
83 |
+
self.version = "1_1"
|
84 |
+
self._net = nn.Sequential(
|
85 |
+
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
|
86 |
+
nn.ReLU(inplace=True),
|
87 |
+
nn.Conv2d(mlp_dim, n_bins, 1, 1, 0),
|
88 |
+
nn.Softplus()
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
"""
|
93 |
+
Returns tensor of bin_width vectors (centers). One vector b for every pixel
|
94 |
+
"""
|
95 |
+
B_centers = self._net(x)
|
96 |
+
return B_centers, B_centers
|
97 |
+
|
98 |
+
|
99 |
+
class Projector(nn.Module):
|
100 |
+
def __init__(self, in_features, out_features, mlp_dim=128):
|
101 |
+
"""Projector MLP
|
102 |
+
|
103 |
+
Args:
|
104 |
+
in_features (int): input channels
|
105 |
+
out_features (int): output channels
|
106 |
+
mlp_dim (int, optional): hidden dimension. Defaults to 128.
|
107 |
+
"""
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self._net = nn.Sequential(
|
111 |
+
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
|
112 |
+
nn.ReLU(inplace=True),
|
113 |
+
nn.Conv2d(mlp_dim, out_features, 1, 1, 0),
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
return self._net(x)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
class LinearSplitter(nn.Module):
|
122 |
+
def __init__(self, in_features, prev_nbins, split_factor=2, mlp_dim=128, min_depth=1e-3, max_depth=10):
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
self.prev_nbins = prev_nbins
|
126 |
+
self.split_factor = split_factor
|
127 |
+
self.min_depth = min_depth
|
128 |
+
self.max_depth = max_depth
|
129 |
+
|
130 |
+
self._net = nn.Sequential(
|
131 |
+
nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
|
132 |
+
nn.GELU(),
|
133 |
+
nn.Conv2d(mlp_dim, prev_nbins * split_factor, 1, 1, 0),
|
134 |
+
nn.ReLU()
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
|
138 |
+
"""
|
139 |
+
x : feature block; shape - n, c, h, w
|
140 |
+
b_prev : previous bin widths normed; shape - n, prev_nbins, h, w
|
141 |
+
"""
|
142 |
+
if prev_b_embedding is not None:
|
143 |
+
if interpolate:
|
144 |
+
prev_b_embedding = nn.functional.interpolate(prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
|
145 |
+
x = x + prev_b_embedding
|
146 |
+
S = self._net(x)
|
147 |
+
eps = 1e-3
|
148 |
+
S = S + eps
|
149 |
+
n, c, h, w = S.shape
|
150 |
+
S = S.view(n, self.prev_nbins, self.split_factor, h, w)
|
151 |
+
S_normed = S / S.sum(dim=2, keepdim=True) # fractional splits
|
152 |
+
|
153 |
+
b_prev = nn.functional.interpolate(b_prev, (h,w), mode='bilinear', align_corners=True)
|
154 |
+
|
155 |
+
|
156 |
+
b_prev = b_prev / b_prev.sum(dim=1, keepdim=True) # renormalize for gurantees
|
157 |
+
# print(b_prev.shape, S_normed.shape)
|
158 |
+
# if is_for_query:(1).expand(-1, b_prev.size(0)//n, -1, -1, -1, -1).flatten(0,1) # TODO ? can replace all this with a single torch.repeat?
|
159 |
+
b = b_prev.unsqueeze(2) * S_normed
|
160 |
+
b = b.flatten(1,2) # .shape n, prev_nbins * split_factor, h, w
|
161 |
+
|
162 |
+
# calculate bin centers for loss calculation
|
163 |
+
B_widths = (self.max_depth - self.min_depth) * b # .shape N, nprev * splitfactor, H, W
|
164 |
+
# pad has the form (left, right, top, bottom, front, back)
|
165 |
+
B_widths = nn.functional.pad(B_widths, (0,0,0,0,1,0), mode='constant', value=self.min_depth)
|
166 |
+
B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW
|
167 |
+
|
168 |
+
B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:,1:,...])
|
169 |
+
return b, B_centers
|
zoedepth/models/layers/patch_transformer.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
|
28 |
+
|
29 |
+
class PatchTransformerEncoder(nn.Module):
|
30 |
+
def __init__(self, in_channels, patch_size=10, embedding_dim=128, num_heads=4, use_class_token=False):
|
31 |
+
"""ViT-like transformer block
|
32 |
+
|
33 |
+
Args:
|
34 |
+
in_channels (int): Input channels
|
35 |
+
patch_size (int, optional): patch size. Defaults to 10.
|
36 |
+
embedding_dim (int, optional): Embedding dimension in transformer model. Defaults to 128.
|
37 |
+
num_heads (int, optional): number of attention heads. Defaults to 4.
|
38 |
+
use_class_token (bool, optional): Whether to use extra token at the start for global accumulation (called as "class token"). Defaults to False.
|
39 |
+
"""
|
40 |
+
super(PatchTransformerEncoder, self).__init__()
|
41 |
+
self.use_class_token = use_class_token
|
42 |
+
encoder_layers = nn.TransformerEncoderLayer(
|
43 |
+
embedding_dim, num_heads, dim_feedforward=1024)
|
44 |
+
self.transformer_encoder = nn.TransformerEncoder(
|
45 |
+
encoder_layers, num_layers=4) # takes shape S,N,E
|
46 |
+
|
47 |
+
self.embedding_convPxP = nn.Conv2d(in_channels, embedding_dim,
|
48 |
+
kernel_size=patch_size, stride=patch_size, padding=0)
|
49 |
+
|
50 |
+
def positional_encoding_1d(self, sequence_length, batch_size, embedding_dim, device='cpu'):
|
51 |
+
"""Generate positional encodings
|
52 |
+
|
53 |
+
Args:
|
54 |
+
sequence_length (int): Sequence length
|
55 |
+
embedding_dim (int): Embedding dimension
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
torch.Tensor SBE: Positional encodings
|
59 |
+
"""
|
60 |
+
position = torch.arange(
|
61 |
+
0, sequence_length, dtype=torch.float32, device=device).unsqueeze(1)
|
62 |
+
index = torch.arange(
|
63 |
+
0, embedding_dim, 2, dtype=torch.float32, device=device).unsqueeze(0)
|
64 |
+
div_term = torch.exp(index * (-torch.log(torch.tensor(10000.0, device=device)) / embedding_dim))
|
65 |
+
pos_encoding = position * div_term
|
66 |
+
pos_encoding = torch.cat([torch.sin(pos_encoding), torch.cos(pos_encoding)], dim=1)
|
67 |
+
pos_encoding = pos_encoding.unsqueeze(1).repeat(1, batch_size, 1)
|
68 |
+
return pos_encoding
|
69 |
+
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
"""Forward pass
|
73 |
+
|
74 |
+
Args:
|
75 |
+
x (torch.Tensor - NCHW): Input feature tensor
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
torch.Tensor - SNE: Transformer output embeddings. S - sequence length (=HW/patch_size^2), N - batch size, E - embedding dim
|
79 |
+
"""
|
80 |
+
embeddings = self.embedding_convPxP(x).flatten(
|
81 |
+
2) # .shape = n,c,s = n, embedding_dim, s
|
82 |
+
if self.use_class_token:
|
83 |
+
# extra special token at start ?
|
84 |
+
embeddings = nn.functional.pad(embeddings, (1, 0))
|
85 |
+
|
86 |
+
# change to S,N,E format required by transformer
|
87 |
+
embeddings = embeddings.permute(2, 0, 1)
|
88 |
+
S, N, E = embeddings.shape
|
89 |
+
embeddings = embeddings + self.positional_encoding_1d(S, N, E, device=embeddings.device)
|
90 |
+
x = self.transformer_encoder(embeddings) # .shape = S, N, E
|
91 |
+
return x
|
zoedepth/models/model_io.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
|
27 |
+
def load_state_dict(model, state_dict):
|
28 |
+
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
|
29 |
+
|
30 |
+
DataParallel prefixes state_dict keys with 'module.' when saving.
|
31 |
+
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
|
32 |
+
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
|
33 |
+
"""
|
34 |
+
state_dict = state_dict.get('model', state_dict)
|
35 |
+
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
|
36 |
+
|
37 |
+
do_prefix = isinstance(
|
38 |
+
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
|
39 |
+
state = {}
|
40 |
+
for k, v in state_dict.items():
|
41 |
+
if k.startswith('module.') and not do_prefix:
|
42 |
+
k = k[7:]
|
43 |
+
|
44 |
+
if not k.startswith('module.') and do_prefix:
|
45 |
+
k = 'module.' + k
|
46 |
+
|
47 |
+
state[k] = v
|
48 |
+
|
49 |
+
model.load_state_dict(state)
|
50 |
+
print("Loaded successfully")
|
51 |
+
return model
|
52 |
+
|
53 |
+
|
54 |
+
def load_wts(model, checkpoint_path):
|
55 |
+
ckpt = torch.load(checkpoint_path, map_location='cpu')
|
56 |
+
return load_state_dict(model, ckpt)
|
57 |
+
|
58 |
+
|
59 |
+
def load_state_dict_from_url(model, url, **kwargs):
|
60 |
+
state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu', **kwargs)
|
61 |
+
return load_state_dict(model, state_dict)
|
62 |
+
|
63 |
+
|
64 |
+
def load_state_from_resource(model, resource: str):
|
65 |
+
"""Loads weights to the model from a given resource. A resource can be of following types:
|
66 |
+
1. URL. Prefixed with "url::"
|
67 |
+
e.g. url::http(s)://url.resource.com/ckpt.pt
|
68 |
+
|
69 |
+
2. Local path. Prefixed with "local::"
|
70 |
+
e.g. local::/path/to/ckpt.pt
|
71 |
+
|
72 |
+
|
73 |
+
Args:
|
74 |
+
model (torch.nn.Module): Model
|
75 |
+
resource (str): resource string
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
torch.nn.Module: Model with loaded weights
|
79 |
+
"""
|
80 |
+
print(f"Using pretrained resource {resource}")
|
81 |
+
|
82 |
+
if resource.startswith('url::'):
|
83 |
+
url = resource.split('url::')[1]
|
84 |
+
return load_state_dict_from_url(model, url, progress=True)
|
85 |
+
|
86 |
+
elif resource.startswith('local::'):
|
87 |
+
path = resource.split('local::')[1]
|
88 |
+
return load_wts(model, path)
|
89 |
+
|
90 |
+
else:
|
91 |
+
raise ValueError("Invalid resource type, only url:: and local:: are supported")
|
92 |
+
|
zoedepth/models/zoedepth/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
from .zoedepth_v1 import ZoeDepth
|
26 |
+
|
27 |
+
all_versions = {
|
28 |
+
"v1": ZoeDepth,
|
29 |
+
}
|
30 |
+
|
31 |
+
get_version = lambda v : all_versions[v]
|
zoedepth/models/zoedepth/config_zoedepth.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"name": "ZoeDepth",
|
4 |
+
"version_name": "v1",
|
5 |
+
"n_bins": 64,
|
6 |
+
"bin_embedding_dim": 128,
|
7 |
+
"bin_centers_type": "softplus",
|
8 |
+
"n_attractors":[16, 8, 4, 1],
|
9 |
+
"attractor_alpha": 1000,
|
10 |
+
"attractor_gamma": 2,
|
11 |
+
"attractor_kind" : "mean",
|
12 |
+
"attractor_type" : "inv",
|
13 |
+
"midas_model_type" : "DPT_BEiT_L_384",
|
14 |
+
"min_temp": 0.0212,
|
15 |
+
"max_temp": 50.0,
|
16 |
+
"output_distribution": "logbinomial",
|
17 |
+
"memory_efficient": true,
|
18 |
+
"inverse_midas": false,
|
19 |
+
"img_size": [384, 512]
|
20 |
+
},
|
21 |
+
|
22 |
+
"train": {
|
23 |
+
"train_midas": true,
|
24 |
+
"use_pretrained_midas": true,
|
25 |
+
"trainer": "zoedepth",
|
26 |
+
"epochs": 5,
|
27 |
+
"bs": 16,
|
28 |
+
"optim_kwargs": {"lr": 0.000161, "wd": 0.01},
|
29 |
+
"sched_kwargs": {"div_factor": 1, "final_div_factor": 10000, "pct_start": 0.7, "three_phase":false, "cycle_momentum": true},
|
30 |
+
"same_lr": false,
|
31 |
+
"w_si": 1,
|
32 |
+
"w_domain": 0.2,
|
33 |
+
"w_reg": 0,
|
34 |
+
"w_grad": 0,
|
35 |
+
"avoid_boundary": false,
|
36 |
+
"random_crop": false,
|
37 |
+
"input_width": 640,
|
38 |
+
"input_height": 480,
|
39 |
+
"midas_lr_factor": 1,
|
40 |
+
"encoder_lr_factor":10,
|
41 |
+
"pos_enc_lr_factor":10,
|
42 |
+
"freeze_midas_bn": true
|
43 |
+
|
44 |
+
},
|
45 |
+
|
46 |
+
"infer":{
|
47 |
+
"train_midas": false,
|
48 |
+
"use_pretrained_midas": false,
|
49 |
+
"pretrained_resource" : "url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_N.pt",
|
50 |
+
"force_keep_ar": true
|
51 |
+
},
|
52 |
+
|
53 |
+
"eval":{
|
54 |
+
"train_midas": false,
|
55 |
+
"use_pretrained_midas": false,
|
56 |
+
"pretrained_resource" : "url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_N.pt"
|
57 |
+
}
|
58 |
+
}
|
zoedepth/models/zoedepth/config_zoedepth_kitti.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"bin_centers_type": "normed",
|
4 |
+
"img_size": [384, 768]
|
5 |
+
},
|
6 |
+
|
7 |
+
"train": {
|
8 |
+
},
|
9 |
+
|
10 |
+
"infer":{
|
11 |
+
"train_midas": false,
|
12 |
+
"use_pretrained_midas": false,
|
13 |
+
"pretrained_resource" : "url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_K.pt",
|
14 |
+
"force_keep_ar": true
|
15 |
+
},
|
16 |
+
|
17 |
+
"eval":{
|
18 |
+
"train_midas": false,
|
19 |
+
"use_pretrained_midas": false,
|
20 |
+
"pretrained_resource" : "url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_K.pt"
|
21 |
+
}
|
22 |
+
}
|
zoedepth/models/zoedepth/zoedepth_v1.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import itertools
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
from zoedepth.models.depth_model import DepthModel
|
30 |
+
from zoedepth.models.base_models.midas import MidasCore
|
31 |
+
from zoedepth.models.layers.attractor import AttractorLayer, AttractorLayerUnnormed
|
32 |
+
from zoedepth.models.layers.dist_layers import ConditionalLogBinomial
|
33 |
+
from zoedepth.models.layers.localbins_layers import (Projector, SeedBinRegressor,
|
34 |
+
SeedBinRegressorUnnormed)
|
35 |
+
from zoedepth.models.model_io import load_state_from_resource
|
36 |
+
|
37 |
+
|
38 |
+
class ZoeDepth(DepthModel):
|
39 |
+
def __init__(self, core, n_bins=64, bin_centers_type="softplus", bin_embedding_dim=128, min_depth=1e-3, max_depth=10,
|
40 |
+
n_attractors=[16, 8, 4, 1], attractor_alpha=300, attractor_gamma=2, attractor_kind='sum', attractor_type='exp', min_temp=5, max_temp=50, train_midas=True,
|
41 |
+
midas_lr_factor=10, encoder_lr_factor=10, pos_enc_lr_factor=10, inverse_midas=False, **kwargs):
|
42 |
+
"""ZoeDepth model. This is the version of ZoeDepth that has a single metric head
|
43 |
+
|
44 |
+
Args:
|
45 |
+
core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features
|
46 |
+
n_bins (int, optional): Number of bin centers. Defaults to 64.
|
47 |
+
bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers.
|
48 |
+
For "softplus", softplus activation is used and thus are unbounded. Defaults to "softplus".
|
49 |
+
bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128.
|
50 |
+
min_depth (float, optional): Lower bound for normed bin centers. Defaults to 1e-3.
|
51 |
+
max_depth (float, optional): Upper bound for normed bin centers. Defaults to 10.
|
52 |
+
n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1].
|
53 |
+
attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300.
|
54 |
+
attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2.
|
55 |
+
attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'.
|
56 |
+
attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'.
|
57 |
+
min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5.
|
58 |
+
max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50.
|
59 |
+
train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True.
|
60 |
+
midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10.
|
61 |
+
encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10.
|
62 |
+
pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10.
|
63 |
+
"""
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
self.core = core
|
67 |
+
self.max_depth = max_depth
|
68 |
+
self.min_depth = min_depth
|
69 |
+
self.min_temp = min_temp
|
70 |
+
self.bin_centers_type = bin_centers_type
|
71 |
+
|
72 |
+
self.midas_lr_factor = midas_lr_factor
|
73 |
+
self.encoder_lr_factor = encoder_lr_factor
|
74 |
+
self.pos_enc_lr_factor = pos_enc_lr_factor
|
75 |
+
self.train_midas = train_midas
|
76 |
+
self.inverse_midas = inverse_midas
|
77 |
+
|
78 |
+
if self.encoder_lr_factor <= 0:
|
79 |
+
self.core.freeze_encoder(
|
80 |
+
freeze_rel_pos=self.pos_enc_lr_factor <= 0)
|
81 |
+
|
82 |
+
N_MIDAS_OUT = 32
|
83 |
+
btlnck_features = self.core.output_channels[0]
|
84 |
+
num_out_features = self.core.output_channels[1:]
|
85 |
+
|
86 |
+
self.conv2 = nn.Conv2d(btlnck_features, btlnck_features,
|
87 |
+
kernel_size=1, stride=1, padding=0) # btlnck conv
|
88 |
+
|
89 |
+
if bin_centers_type == "normed":
|
90 |
+
SeedBinRegressorLayer = SeedBinRegressor
|
91 |
+
Attractor = AttractorLayer
|
92 |
+
elif bin_centers_type == "softplus":
|
93 |
+
SeedBinRegressorLayer = SeedBinRegressorUnnormed
|
94 |
+
Attractor = AttractorLayerUnnormed
|
95 |
+
elif bin_centers_type == "hybrid1":
|
96 |
+
SeedBinRegressorLayer = SeedBinRegressor
|
97 |
+
Attractor = AttractorLayerUnnormed
|
98 |
+
elif bin_centers_type == "hybrid2":
|
99 |
+
SeedBinRegressorLayer = SeedBinRegressorUnnormed
|
100 |
+
Attractor = AttractorLayer
|
101 |
+
else:
|
102 |
+
raise ValueError(
|
103 |
+
"bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'")
|
104 |
+
|
105 |
+
self.seed_bin_regressor = SeedBinRegressorLayer(
|
106 |
+
btlnck_features, n_bins=n_bins, min_depth=min_depth, max_depth=max_depth)
|
107 |
+
self.seed_projector = Projector(btlnck_features, bin_embedding_dim)
|
108 |
+
self.projectors = nn.ModuleList([
|
109 |
+
Projector(num_out, bin_embedding_dim)
|
110 |
+
for num_out in num_out_features
|
111 |
+
])
|
112 |
+
self.attractors = nn.ModuleList([
|
113 |
+
Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=min_depth, max_depth=max_depth,
|
114 |
+
alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type)
|
115 |
+
for i in range(len(num_out_features))
|
116 |
+
])
|
117 |
+
|
118 |
+
last_in = N_MIDAS_OUT + 1 # +1 for relative depth
|
119 |
+
|
120 |
+
# use log binomial instead of softmax
|
121 |
+
self.conditional_log_binomial = ConditionalLogBinomial(
|
122 |
+
last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp)
|
123 |
+
|
124 |
+
def forward(self, x, return_final_centers=False, denorm=False, return_probs=False, **kwargs):
|
125 |
+
"""
|
126 |
+
Args:
|
127 |
+
x (torch.Tensor): Input image tensor of shape (B, C, H, W)
|
128 |
+
return_final_centers (bool, optional): Whether to return the final bin centers. Defaults to False.
|
129 |
+
denorm (bool, optional): Whether to denormalize the input image. This reverses ImageNet normalization as midas normalization is different. Defaults to False.
|
130 |
+
return_probs (bool, optional): Whether to return the output probability distribution. Defaults to False.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
dict: Dictionary containing the following keys:
|
134 |
+
- rel_depth (torch.Tensor): Relative depth map of shape (B, H, W)
|
135 |
+
- metric_depth (torch.Tensor): Metric depth map of shape (B, 1, H, W)
|
136 |
+
- bin_centers (torch.Tensor): Bin centers of shape (B, n_bins). Present only if return_final_centers is True
|
137 |
+
- probs (torch.Tensor): Output probability distribution of shape (B, n_bins, H, W). Present only if return_probs is True
|
138 |
+
|
139 |
+
"""
|
140 |
+
b, c, h, w = x.shape
|
141 |
+
# print("input shape ", x.shape)
|
142 |
+
self.orig_input_width = w
|
143 |
+
self.orig_input_height = h
|
144 |
+
rel_depth, out = self.core(x, denorm=denorm, return_rel_depth=True)
|
145 |
+
# print("output shapes", rel_depth.shape, out.shape)
|
146 |
+
|
147 |
+
outconv_activation = out[0]
|
148 |
+
btlnck = out[1]
|
149 |
+
x_blocks = out[2:]
|
150 |
+
|
151 |
+
x_d0 = self.conv2(btlnck)
|
152 |
+
x = x_d0
|
153 |
+
_, seed_b_centers = self.seed_bin_regressor(x)
|
154 |
+
|
155 |
+
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2':
|
156 |
+
b_prev = (seed_b_centers - self.min_depth) / \
|
157 |
+
(self.max_depth - self.min_depth)
|
158 |
+
else:
|
159 |
+
b_prev = seed_b_centers
|
160 |
+
|
161 |
+
prev_b_embedding = self.seed_projector(x)
|
162 |
+
|
163 |
+
# unroll this loop for better performance
|
164 |
+
for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks):
|
165 |
+
b_embedding = projector(x)
|
166 |
+
b, b_centers = attractor(
|
167 |
+
b_embedding, b_prev, prev_b_embedding, interpolate=True)
|
168 |
+
b_prev = b.clone()
|
169 |
+
prev_b_embedding = b_embedding.clone()
|
170 |
+
|
171 |
+
last = outconv_activation
|
172 |
+
|
173 |
+
if self.inverse_midas:
|
174 |
+
# invert depth followed by normalization
|
175 |
+
rel_depth = 1.0 / (rel_depth + 1e-6)
|
176 |
+
rel_depth = (rel_depth - rel_depth.min()) / \
|
177 |
+
(rel_depth.max() - rel_depth.min())
|
178 |
+
# concat rel depth with last. First interpolate rel depth to last size
|
179 |
+
rel_cond = rel_depth.unsqueeze(1)
|
180 |
+
rel_cond = nn.functional.interpolate(
|
181 |
+
rel_cond, size=last.shape[2:], mode='bilinear', align_corners=True)
|
182 |
+
last = torch.cat([last, rel_cond], dim=1)
|
183 |
+
|
184 |
+
b_embedding = nn.functional.interpolate(
|
185 |
+
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
|
186 |
+
x = self.conditional_log_binomial(last, b_embedding)
|
187 |
+
|
188 |
+
# Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor
|
189 |
+
# print(x.shape, b_centers.shape)
|
190 |
+
b_centers = nn.functional.interpolate(
|
191 |
+
b_centers, x.shape[-2:], mode='bilinear', align_corners=True)
|
192 |
+
out = torch.sum(x * b_centers, dim=1, keepdim=True)
|
193 |
+
|
194 |
+
# Structure output dict
|
195 |
+
output = dict(metric_depth=out)
|
196 |
+
if return_final_centers or return_probs:
|
197 |
+
output['bin_centers'] = b_centers
|
198 |
+
|
199 |
+
if return_probs:
|
200 |
+
output['probs'] = x
|
201 |
+
|
202 |
+
return output
|
203 |
+
|
204 |
+
def get_lr_params(self, lr):
|
205 |
+
"""
|
206 |
+
Learning rate configuration for different layers of the model
|
207 |
+
Args:
|
208 |
+
lr (float) : Base learning rate
|
209 |
+
Returns:
|
210 |
+
list : list of parameters to optimize and their learning rates, in the format required by torch optimizers.
|
211 |
+
"""
|
212 |
+
param_conf = []
|
213 |
+
if self.train_midas:
|
214 |
+
if self.encoder_lr_factor > 0:
|
215 |
+
param_conf.append({'params': self.core.get_enc_params_except_rel_pos(
|
216 |
+
), 'lr': lr / self.encoder_lr_factor})
|
217 |
+
|
218 |
+
if self.pos_enc_lr_factor > 0:
|
219 |
+
param_conf.append(
|
220 |
+
{'params': self.core.get_rel_pos_params(), 'lr': lr / self.pos_enc_lr_factor})
|
221 |
+
|
222 |
+
midas_params = self.core.core.scratch.parameters()
|
223 |
+
midas_lr_factor = self.midas_lr_factor
|
224 |
+
param_conf.append(
|
225 |
+
{'params': midas_params, 'lr': lr / midas_lr_factor})
|
226 |
+
|
227 |
+
remaining_modules = []
|
228 |
+
for name, child in self.named_children():
|
229 |
+
if name != 'core':
|
230 |
+
remaining_modules.append(child)
|
231 |
+
remaining_params = itertools.chain(
|
232 |
+
*[child.parameters() for child in remaining_modules])
|
233 |
+
|
234 |
+
param_conf.append({'params': remaining_params, 'lr': lr})
|
235 |
+
|
236 |
+
return param_conf
|
237 |
+
|
238 |
+
@staticmethod
|
239 |
+
def build(midas_model_type="DPT_BEiT_L_384", pretrained_resource=None, use_pretrained_midas=False, train_midas=False, freeze_midas_bn=True, **kwargs):
|
240 |
+
core = MidasCore.build(midas_model_type=midas_model_type, use_pretrained_midas=use_pretrained_midas,
|
241 |
+
train_midas=train_midas, fetch_features=True, freeze_bn=freeze_midas_bn, **kwargs)
|
242 |
+
model = ZoeDepth(core, **kwargs)
|
243 |
+
if pretrained_resource:
|
244 |
+
assert isinstance(pretrained_resource, str), "pretrained_resource must be a string"
|
245 |
+
model = load_state_from_resource(model, pretrained_resource)
|
246 |
+
return model
|
247 |
+
|
248 |
+
@staticmethod
|
249 |
+
def build_from_config(config):
|
250 |
+
return ZoeDepth.build(**config)
|
zoedepth/models/zoedepth_nk/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
from .zoedepth_nk_v1 import ZoeDepthNK
|
26 |
+
|
27 |
+
all_versions = {
|
28 |
+
"v1": ZoeDepthNK,
|
29 |
+
}
|
30 |
+
|
31 |
+
get_version = lambda v : all_versions[v]
|
zoedepth/models/zoedepth_nk/config_zoedepth_nk.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"name": "ZoeDepthNK",
|
4 |
+
"version_name": "v1",
|
5 |
+
"bin_conf" : [
|
6 |
+
{
|
7 |
+
"name": "nyu",
|
8 |
+
"n_bins": 64,
|
9 |
+
"min_depth": 1e-3,
|
10 |
+
"max_depth": 10.0
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"name": "kitti",
|
14 |
+
"n_bins": 64,
|
15 |
+
"min_depth": 1e-3,
|
16 |
+
"max_depth": 80.0
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"bin_embedding_dim": 128,
|
20 |
+
"bin_centers_type": "softplus",
|
21 |
+
"n_attractors":[16, 8, 4, 1],
|
22 |
+
"attractor_alpha": 1000,
|
23 |
+
"attractor_gamma": 2,
|
24 |
+
"attractor_kind" : "mean",
|
25 |
+
"attractor_type" : "inv",
|
26 |
+
"min_temp": 0.0212,
|
27 |
+
"max_temp": 50.0,
|
28 |
+
"memory_efficient": true,
|
29 |
+
"midas_model_type" : "DPT_BEiT_L_384",
|
30 |
+
"img_size": [384, 512]
|
31 |
+
},
|
32 |
+
|
33 |
+
"train": {
|
34 |
+
"train_midas": true,
|
35 |
+
"use_pretrained_midas": true,
|
36 |
+
"trainer": "zoedepth_nk",
|
37 |
+
"epochs": 5,
|
38 |
+
"bs": 16,
|
39 |
+
"optim_kwargs": {"lr": 0.0002512, "wd": 0.01},
|
40 |
+
"sched_kwargs": {"div_factor": 1, "final_div_factor": 10000, "pct_start": 0.7, "three_phase":false, "cycle_momentum": true},
|
41 |
+
"same_lr": false,
|
42 |
+
"w_si": 1,
|
43 |
+
"w_domain": 100,
|
44 |
+
"avoid_boundary": false,
|
45 |
+
"random_crop": false,
|
46 |
+
"input_width": 640,
|
47 |
+
"input_height": 480,
|
48 |
+
"w_grad": 0,
|
49 |
+
"w_reg": 0,
|
50 |
+
"midas_lr_factor": 10,
|
51 |
+
"encoder_lr_factor":10,
|
52 |
+
"pos_enc_lr_factor":10
|
53 |
+
},
|
54 |
+
|
55 |
+
"infer": {
|
56 |
+
"train_midas": false,
|
57 |
+
"pretrained_resource": "url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_NK.pt",
|
58 |
+
"use_pretrained_midas": false,
|
59 |
+
"force_keep_ar": true
|
60 |
+
},
|
61 |
+
|
62 |
+
"eval": {
|
63 |
+
"train_midas": false,
|
64 |
+
"pretrained_resource": "url::https://github.com/isl-org/ZoeDepth/releases/download/v1.0/ZoeD_M12_NK.pt",
|
65 |
+
"use_pretrained_midas": false
|
66 |
+
}
|
67 |
+
}
|
zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import itertools
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
|
30 |
+
from zoedepth.models.depth_model import DepthModel
|
31 |
+
from zoedepth.models.base_models.midas import MidasCore
|
32 |
+
from zoedepth.models.layers.attractor import AttractorLayer, AttractorLayerUnnormed
|
33 |
+
from zoedepth.models.layers.dist_layers import ConditionalLogBinomial
|
34 |
+
from zoedepth.models.layers.localbins_layers import (Projector, SeedBinRegressor,
|
35 |
+
SeedBinRegressorUnnormed)
|
36 |
+
from zoedepth.models.layers.patch_transformer import PatchTransformerEncoder
|
37 |
+
from zoedepth.models.model_io import load_state_from_resource
|
38 |
+
|
39 |
+
|
40 |
+
class ZoeDepthNK(DepthModel):
|
41 |
+
def __init__(self, core, bin_conf, bin_centers_type="softplus", bin_embedding_dim=128,
|
42 |
+
n_attractors=[16, 8, 4, 1], attractor_alpha=300, attractor_gamma=2, attractor_kind='sum', attractor_type='exp',
|
43 |
+
min_temp=5, max_temp=50,
|
44 |
+
memory_efficient=False, train_midas=True,
|
45 |
+
is_midas_pretrained=True, midas_lr_factor=1, encoder_lr_factor=10, pos_enc_lr_factor=10, inverse_midas=False, **kwargs):
|
46 |
+
"""ZoeDepthNK model. This is the version of ZoeDepth that has two metric heads and uses a learned router to route to experts.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features
|
50 |
+
|
51 |
+
bin_conf (List[dict]): A list of dictionaries that contain the bin configuration for each metric head. Each dictionary should contain the following keys:
|
52 |
+
"name" (str, typically same as the dataset name), "n_bins" (int), "min_depth" (float), "max_depth" (float)
|
53 |
+
|
54 |
+
The length of this list determines the number of metric heads.
|
55 |
+
bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers.
|
56 |
+
For "softplus", softplus activation is used and thus are unbounded. Defaults to "normed".
|
57 |
+
bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128.
|
58 |
+
|
59 |
+
n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1].
|
60 |
+
attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300.
|
61 |
+
attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2.
|
62 |
+
attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'.
|
63 |
+
attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'.
|
64 |
+
|
65 |
+
min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5.
|
66 |
+
max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50.
|
67 |
+
|
68 |
+
memory_efficient (bool, optional): Whether to use memory efficient version of attractor layers. Memory efficient version is slower but is recommended incase of multiple metric heads in order save GPU memory. Defaults to False.
|
69 |
+
|
70 |
+
train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True.
|
71 |
+
is_midas_pretrained (bool, optional): Is "core" pretrained? Defaults to True.
|
72 |
+
midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10.
|
73 |
+
encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10.
|
74 |
+
pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10.
|
75 |
+
|
76 |
+
"""
|
77 |
+
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.core = core
|
81 |
+
self.bin_conf = bin_conf
|
82 |
+
self.min_temp = min_temp
|
83 |
+
self.max_temp = max_temp
|
84 |
+
self.memory_efficient = memory_efficient
|
85 |
+
self.train_midas = train_midas
|
86 |
+
self.is_midas_pretrained = is_midas_pretrained
|
87 |
+
self.midas_lr_factor = midas_lr_factor
|
88 |
+
self.encoder_lr_factor = encoder_lr_factor
|
89 |
+
self.pos_enc_lr_factor = pos_enc_lr_factor
|
90 |
+
self.inverse_midas = inverse_midas
|
91 |
+
|
92 |
+
N_MIDAS_OUT = 32
|
93 |
+
btlnck_features = self.core.output_channels[0]
|
94 |
+
num_out_features = self.core.output_channels[1:]
|
95 |
+
# self.scales = [16, 8, 4, 2] # spatial scale factors
|
96 |
+
|
97 |
+
self.conv2 = nn.Conv2d(
|
98 |
+
btlnck_features, btlnck_features, kernel_size=1, stride=1, padding=0)
|
99 |
+
|
100 |
+
# Transformer classifier on the bottleneck
|
101 |
+
self.patch_transformer = PatchTransformerEncoder(
|
102 |
+
btlnck_features, 1, 128, use_class_token=True)
|
103 |
+
self.mlp_classifier = nn.Sequential(
|
104 |
+
nn.Linear(128, 128),
|
105 |
+
nn.ReLU(),
|
106 |
+
nn.Linear(128, 2)
|
107 |
+
)
|
108 |
+
|
109 |
+
if bin_centers_type == "normed":
|
110 |
+
SeedBinRegressorLayer = SeedBinRegressor
|
111 |
+
Attractor = AttractorLayer
|
112 |
+
elif bin_centers_type == "softplus":
|
113 |
+
SeedBinRegressorLayer = SeedBinRegressorUnnormed
|
114 |
+
Attractor = AttractorLayerUnnormed
|
115 |
+
elif bin_centers_type == "hybrid1":
|
116 |
+
SeedBinRegressorLayer = SeedBinRegressor
|
117 |
+
Attractor = AttractorLayerUnnormed
|
118 |
+
elif bin_centers_type == "hybrid2":
|
119 |
+
SeedBinRegressorLayer = SeedBinRegressorUnnormed
|
120 |
+
Attractor = AttractorLayer
|
121 |
+
else:
|
122 |
+
raise ValueError(
|
123 |
+
"bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'")
|
124 |
+
self.bin_centers_type = bin_centers_type
|
125 |
+
# We have bins for each bin conf.
|
126 |
+
# Create a map (ModuleDict) of 'name' -> seed_bin_regressor
|
127 |
+
self.seed_bin_regressors = nn.ModuleDict(
|
128 |
+
{conf['name']: SeedBinRegressorLayer(btlnck_features, conf["n_bins"], mlp_dim=bin_embedding_dim//2, min_depth=conf["min_depth"], max_depth=conf["max_depth"])
|
129 |
+
for conf in bin_conf}
|
130 |
+
)
|
131 |
+
|
132 |
+
self.seed_projector = Projector(
|
133 |
+
btlnck_features, bin_embedding_dim, mlp_dim=bin_embedding_dim//2)
|
134 |
+
self.projectors = nn.ModuleList([
|
135 |
+
Projector(num_out, bin_embedding_dim, mlp_dim=bin_embedding_dim//2)
|
136 |
+
for num_out in num_out_features
|
137 |
+
])
|
138 |
+
|
139 |
+
# Create a map (ModuleDict) of 'name' -> attractors (ModuleList)
|
140 |
+
self.attractors = nn.ModuleDict(
|
141 |
+
{conf['name']: nn.ModuleList([
|
142 |
+
Attractor(bin_embedding_dim, n_attractors[i],
|
143 |
+
mlp_dim=bin_embedding_dim, alpha=attractor_alpha,
|
144 |
+
gamma=attractor_gamma, kind=attractor_kind,
|
145 |
+
attractor_type=attractor_type, memory_efficient=memory_efficient,
|
146 |
+
min_depth=conf["min_depth"], max_depth=conf["max_depth"])
|
147 |
+
for i in range(len(n_attractors))
|
148 |
+
])
|
149 |
+
for conf in bin_conf}
|
150 |
+
)
|
151 |
+
|
152 |
+
last_in = N_MIDAS_OUT
|
153 |
+
# conditional log binomial for each bin conf
|
154 |
+
self.conditional_log_binomial = nn.ModuleDict(
|
155 |
+
{conf['name']: ConditionalLogBinomial(last_in, bin_embedding_dim, conf['n_bins'], bottleneck_factor=4, min_temp=self.min_temp, max_temp=self.max_temp)
|
156 |
+
for conf in bin_conf}
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x, return_final_centers=False, denorm=False, return_probs=False, **kwargs):
|
160 |
+
"""
|
161 |
+
Args:
|
162 |
+
x (torch.Tensor): Input image tensor of shape (B, C, H, W). Assumes all images are from the same domain.
|
163 |
+
return_final_centers (bool, optional): Whether to return the final centers of the attractors. Defaults to False.
|
164 |
+
denorm (bool, optional): Whether to denormalize the input image. Defaults to False.
|
165 |
+
return_probs (bool, optional): Whether to return the probabilities of the bins. Defaults to False.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
dict: Dictionary of outputs with keys:
|
169 |
+
- "rel_depth": Relative depth map of shape (B, 1, H, W)
|
170 |
+
- "metric_depth": Metric depth map of shape (B, 1, H, W)
|
171 |
+
- "domain_logits": Domain logits of shape (B, 2)
|
172 |
+
- "bin_centers": Bin centers of shape (B, N, H, W). Present only if return_final_centers is True
|
173 |
+
- "probs": Bin probabilities of shape (B, N, H, W). Present only if return_probs is True
|
174 |
+
"""
|
175 |
+
b, c, h, w = x.shape
|
176 |
+
self.orig_input_width = w
|
177 |
+
self.orig_input_height = h
|
178 |
+
rel_depth, out = self.core(x, denorm=denorm, return_rel_depth=True)
|
179 |
+
|
180 |
+
outconv_activation = out[0]
|
181 |
+
btlnck = out[1]
|
182 |
+
x_blocks = out[2:]
|
183 |
+
|
184 |
+
x_d0 = self.conv2(btlnck)
|
185 |
+
x = x_d0
|
186 |
+
|
187 |
+
# Predict which path to take
|
188 |
+
embedding = self.patch_transformer(x)[0] # N, E
|
189 |
+
domain_logits = self.mlp_classifier(embedding) # N, 2
|
190 |
+
domain_vote = torch.softmax(domain_logits.sum(
|
191 |
+
dim=0, keepdim=True), dim=-1) # 1, 2
|
192 |
+
|
193 |
+
# Get the path
|
194 |
+
bin_conf_name = ["nyu", "kitti"][torch.argmax(
|
195 |
+
domain_vote, dim=-1).squeeze().item()]
|
196 |
+
|
197 |
+
try:
|
198 |
+
conf = [c for c in self.bin_conf if c.name == bin_conf_name][0]
|
199 |
+
except IndexError:
|
200 |
+
raise ValueError(
|
201 |
+
f"bin_conf_name {bin_conf_name} not found in bin_confs")
|
202 |
+
|
203 |
+
min_depth = conf['min_depth']
|
204 |
+
max_depth = conf['max_depth']
|
205 |
+
|
206 |
+
seed_bin_regressor = self.seed_bin_regressors[bin_conf_name]
|
207 |
+
_, seed_b_centers = seed_bin_regressor(x)
|
208 |
+
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2':
|
209 |
+
b_prev = (seed_b_centers - min_depth)/(max_depth - min_depth)
|
210 |
+
else:
|
211 |
+
b_prev = seed_b_centers
|
212 |
+
prev_b_embedding = self.seed_projector(x)
|
213 |
+
|
214 |
+
attractors = self.attractors[bin_conf_name]
|
215 |
+
for projector, attractor, x in zip(self.projectors, attractors, x_blocks):
|
216 |
+
b_embedding = projector(x)
|
217 |
+
b, b_centers = attractor(
|
218 |
+
b_embedding, b_prev, prev_b_embedding, interpolate=True)
|
219 |
+
b_prev = b
|
220 |
+
prev_b_embedding = b_embedding
|
221 |
+
|
222 |
+
last = outconv_activation
|
223 |
+
|
224 |
+
b_centers = nn.functional.interpolate(
|
225 |
+
b_centers, last.shape[-2:], mode='bilinear', align_corners=True)
|
226 |
+
b_embedding = nn.functional.interpolate(
|
227 |
+
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
|
228 |
+
|
229 |
+
clb = self.conditional_log_binomial[bin_conf_name]
|
230 |
+
x = clb(last, b_embedding)
|
231 |
+
|
232 |
+
# Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor
|
233 |
+
# print(x.shape, b_centers.shape)
|
234 |
+
# b_centers = nn.functional.interpolate(b_centers, x.shape[-2:], mode='bilinear', align_corners=True)
|
235 |
+
out = torch.sum(x * b_centers, dim=1, keepdim=True)
|
236 |
+
|
237 |
+
output = dict(domain_logits=domain_logits, metric_depth=out)
|
238 |
+
if return_final_centers or return_probs:
|
239 |
+
output['bin_centers'] = b_centers
|
240 |
+
|
241 |
+
if return_probs:
|
242 |
+
output['probs'] = x
|
243 |
+
return output
|
244 |
+
|
245 |
+
def get_lr_params(self, lr):
|
246 |
+
"""
|
247 |
+
Learning rate configuration for different layers of the model
|
248 |
+
|
249 |
+
Args:
|
250 |
+
lr (float) : Base learning rate
|
251 |
+
Returns:
|
252 |
+
list : list of parameters to optimize and their learning rates, in the format required by torch optimizers.
|
253 |
+
"""
|
254 |
+
param_conf = []
|
255 |
+
if self.train_midas:
|
256 |
+
def get_rel_pos_params():
|
257 |
+
for name, p in self.core.core.pretrained.named_parameters():
|
258 |
+
if "relative_position" in name:
|
259 |
+
yield p
|
260 |
+
|
261 |
+
def get_enc_params_except_rel_pos():
|
262 |
+
for name, p in self.core.core.pretrained.named_parameters():
|
263 |
+
if "relative_position" not in name:
|
264 |
+
yield p
|
265 |
+
|
266 |
+
encoder_params = get_enc_params_except_rel_pos()
|
267 |
+
rel_pos_params = get_rel_pos_params()
|
268 |
+
midas_params = self.core.core.scratch.parameters()
|
269 |
+
midas_lr_factor = self.midas_lr_factor if self.is_midas_pretrained else 1.0
|
270 |
+
param_conf.extend([
|
271 |
+
{'params': encoder_params, 'lr': lr / self.encoder_lr_factor},
|
272 |
+
{'params': rel_pos_params, 'lr': lr / self.pos_enc_lr_factor},
|
273 |
+
{'params': midas_params, 'lr': lr / midas_lr_factor}
|
274 |
+
])
|
275 |
+
|
276 |
+
remaining_modules = []
|
277 |
+
for name, child in self.named_children():
|
278 |
+
if name != 'core':
|
279 |
+
remaining_modules.append(child)
|
280 |
+
remaining_params = itertools.chain(
|
281 |
+
*[child.parameters() for child in remaining_modules])
|
282 |
+
param_conf.append({'params': remaining_params, 'lr': lr})
|
283 |
+
return param_conf
|
284 |
+
|
285 |
+
def get_conf_parameters(self, conf_name):
|
286 |
+
"""
|
287 |
+
Returns parameters of all the ModuleDicts children that are exclusively used for the given bin configuration
|
288 |
+
"""
|
289 |
+
params = []
|
290 |
+
for name, child in self.named_children():
|
291 |
+
if isinstance(child, nn.ModuleDict):
|
292 |
+
for bin_conf_name, module in child.items():
|
293 |
+
if bin_conf_name == conf_name:
|
294 |
+
params += list(module.parameters())
|
295 |
+
return params
|
296 |
+
|
297 |
+
def freeze_conf(self, conf_name):
|
298 |
+
"""
|
299 |
+
Freezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration
|
300 |
+
"""
|
301 |
+
for p in self.get_conf_parameters(conf_name):
|
302 |
+
p.requires_grad = False
|
303 |
+
|
304 |
+
def unfreeze_conf(self, conf_name):
|
305 |
+
"""
|
306 |
+
Unfreezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration
|
307 |
+
"""
|
308 |
+
for p in self.get_conf_parameters(conf_name):
|
309 |
+
p.requires_grad = True
|
310 |
+
|
311 |
+
def freeze_all_confs(self):
|
312 |
+
"""
|
313 |
+
Freezes all the parameters of all the ModuleDicts children
|
314 |
+
"""
|
315 |
+
for name, child in self.named_children():
|
316 |
+
if isinstance(child, nn.ModuleDict):
|
317 |
+
for bin_conf_name, module in child.items():
|
318 |
+
for p in module.parameters():
|
319 |
+
p.requires_grad = False
|
320 |
+
|
321 |
+
@staticmethod
|
322 |
+
def build(midas_model_type="DPT_BEiT_L_384", pretrained_resource=None, use_pretrained_midas=False, train_midas=False, freeze_midas_bn=True, **kwargs):
|
323 |
+
core = MidasCore.build(midas_model_type=midas_model_type, use_pretrained_midas=use_pretrained_midas,
|
324 |
+
train_midas=train_midas, fetch_features=True, freeze_bn=freeze_midas_bn, **kwargs)
|
325 |
+
model = ZoeDepthNK(core, **kwargs)
|
326 |
+
if pretrained_resource:
|
327 |
+
assert isinstance(pretrained_resource, str), "pretrained_resource must be a string"
|
328 |
+
model = load_state_from_resource(model, pretrained_resource)
|
329 |
+
return model
|
330 |
+
|
331 |
+
@staticmethod
|
332 |
+
def build_from_config(config):
|
333 |
+
return ZoeDepthNK.build(**config)
|
zoedepth/trainers/base_trainer.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import os
|
26 |
+
import uuid
|
27 |
+
import warnings
|
28 |
+
from datetime import datetime as dt
|
29 |
+
from typing import Dict
|
30 |
+
|
31 |
+
import matplotlib.pyplot as plt
|
32 |
+
import numpy as np
|
33 |
+
import torch
|
34 |
+
import torch.distributed as dist
|
35 |
+
import torch.nn as nn
|
36 |
+
import torch.optim as optim
|
37 |
+
import wandb
|
38 |
+
from tqdm import tqdm
|
39 |
+
|
40 |
+
from zoedepth.utils.config import flatten
|
41 |
+
from zoedepth.utils.misc import RunningAverageDict, colorize, colors
|
42 |
+
|
43 |
+
|
44 |
+
def is_rank_zero(args):
|
45 |
+
return args.rank == 0
|
46 |
+
|
47 |
+
|
48 |
+
class BaseTrainer:
|
49 |
+
def __init__(self, config, model, train_loader, test_loader=None, device=None):
|
50 |
+
""" Base Trainer class for training a model."""
|
51 |
+
|
52 |
+
self.config = config
|
53 |
+
self.metric_criterion = "abs_rel"
|
54 |
+
if device is None:
|
55 |
+
device = torch.device(
|
56 |
+
'cuda') if torch.cuda.is_available() else torch.device('cpu')
|
57 |
+
self.device = device
|
58 |
+
self.model = model
|
59 |
+
self.train_loader = train_loader
|
60 |
+
self.test_loader = test_loader
|
61 |
+
self.optimizer = self.init_optimizer()
|
62 |
+
self.scheduler = self.init_scheduler()
|
63 |
+
|
64 |
+
def resize_to_target(self, prediction, target):
|
65 |
+
if prediction.shape[2:] != target.shape[-2:]:
|
66 |
+
prediction = nn.functional.interpolate(
|
67 |
+
prediction, size=target.shape[-2:], mode="bilinear", align_corners=True
|
68 |
+
)
|
69 |
+
return prediction
|
70 |
+
|
71 |
+
def load_ckpt(self, checkpoint_dir="./checkpoints", ckpt_type="best"):
|
72 |
+
import glob
|
73 |
+
import os
|
74 |
+
|
75 |
+
from zoedepth.models.model_io import load_wts
|
76 |
+
|
77 |
+
if hasattr(self.config, "checkpoint"):
|
78 |
+
checkpoint = self.config.checkpoint
|
79 |
+
elif hasattr(self.config, "ckpt_pattern"):
|
80 |
+
pattern = self.config.ckpt_pattern
|
81 |
+
matches = glob.glob(os.path.join(
|
82 |
+
checkpoint_dir, f"*{pattern}*{ckpt_type}*"))
|
83 |
+
if not (len(matches) > 0):
|
84 |
+
raise ValueError(f"No matches found for the pattern {pattern}")
|
85 |
+
checkpoint = matches[0]
|
86 |
+
else:
|
87 |
+
return
|
88 |
+
model = load_wts(self.model, checkpoint)
|
89 |
+
# TODO : Resuming training is not properly supported in this repo. Implement loading / saving of optimizer and scheduler to support it.
|
90 |
+
print("Loaded weights from {0}".format(checkpoint))
|
91 |
+
warnings.warn(
|
92 |
+
"Resuming training is not properly supported in this repo. Implement loading / saving of optimizer and scheduler to support it.")
|
93 |
+
self.model = model
|
94 |
+
|
95 |
+
def init_optimizer(self):
|
96 |
+
m = self.model.module if self.config.multigpu else self.model
|
97 |
+
|
98 |
+
if self.config.same_lr:
|
99 |
+
print("Using same LR")
|
100 |
+
if hasattr(m, 'core'):
|
101 |
+
m.core.unfreeze()
|
102 |
+
params = self.model.parameters()
|
103 |
+
else:
|
104 |
+
print("Using diff LR")
|
105 |
+
if not hasattr(m, 'get_lr_params'):
|
106 |
+
raise NotImplementedError(
|
107 |
+
f"Model {m.__class__.__name__} does not implement get_lr_params. Please implement it or use the same LR for all parameters.")
|
108 |
+
|
109 |
+
params = m.get_lr_params(self.config.lr)
|
110 |
+
|
111 |
+
return optim.AdamW(params, lr=self.config.lr, weight_decay=self.config.wd)
|
112 |
+
|
113 |
+
def init_scheduler(self):
|
114 |
+
lrs = [l['lr'] for l in self.optimizer.param_groups]
|
115 |
+
return optim.lr_scheduler.OneCycleLR(self.optimizer, lrs, epochs=self.config.epochs, steps_per_epoch=len(self.train_loader),
|
116 |
+
cycle_momentum=self.config.cycle_momentum,
|
117 |
+
base_momentum=0.85, max_momentum=0.95, div_factor=self.config.div_factor, final_div_factor=self.config.final_div_factor, pct_start=self.config.pct_start, three_phase=self.config.three_phase)
|
118 |
+
|
119 |
+
def train_on_batch(self, batch, train_step):
|
120 |
+
raise NotImplementedError
|
121 |
+
|
122 |
+
def validate_on_batch(self, batch, val_step):
|
123 |
+
raise NotImplementedError
|
124 |
+
|
125 |
+
def raise_if_nan(self, losses):
|
126 |
+
for key, value in losses.items():
|
127 |
+
if torch.isnan(value):
|
128 |
+
raise ValueError(f"{key} is NaN, Stopping training")
|
129 |
+
|
130 |
+
@property
|
131 |
+
def iters_per_epoch(self):
|
132 |
+
return len(self.train_loader)
|
133 |
+
|
134 |
+
@property
|
135 |
+
def total_iters(self):
|
136 |
+
return self.config.epochs * self.iters_per_epoch
|
137 |
+
|
138 |
+
def should_early_stop(self):
|
139 |
+
if self.config.get('early_stop', False) and self.step > self.config.early_stop:
|
140 |
+
return True
|
141 |
+
|
142 |
+
def train(self):
|
143 |
+
print(f"Training {self.config.name}")
|
144 |
+
if self.config.uid is None:
|
145 |
+
self.config.uid = str(uuid.uuid4()).split('-')[-1]
|
146 |
+
run_id = f"{dt.now().strftime('%d-%h_%H-%M')}-{self.config.uid}"
|
147 |
+
self.config.run_id = run_id
|
148 |
+
self.config.experiment_id = f"{self.config.name}{self.config.version_name}_{run_id}"
|
149 |
+
self.should_write = ((not self.config.distributed)
|
150 |
+
or self.config.rank == 0)
|
151 |
+
self.should_log = self.should_write # and logging
|
152 |
+
if self.should_log:
|
153 |
+
tags = self.config.tags.split(
|
154 |
+
',') if self.config.tags != '' else None
|
155 |
+
wandb.init(project=self.config.project, name=self.config.experiment_id, config=flatten(self.config), dir=self.config.root,
|
156 |
+
tags=tags, notes=self.config.notes, settings=wandb.Settings(start_method="fork"))
|
157 |
+
|
158 |
+
self.model.train()
|
159 |
+
self.step = 0
|
160 |
+
best_loss = np.inf
|
161 |
+
validate_every = int(self.config.validate_every * self.iters_per_epoch)
|
162 |
+
|
163 |
+
|
164 |
+
if self.config.prefetch:
|
165 |
+
|
166 |
+
for i, batch in tqdm(enumerate(self.train_loader), desc=f"Prefetching...",
|
167 |
+
total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader):
|
168 |
+
pass
|
169 |
+
|
170 |
+
losses = {}
|
171 |
+
def stringify_losses(L): return "; ".join(map(
|
172 |
+
lambda kv: f"{colors.fg.purple}{kv[0]}{colors.reset}: {round(kv[1].item(),3):.4e}", L.items()))
|
173 |
+
for epoch in range(self.config.epochs):
|
174 |
+
if self.should_early_stop():
|
175 |
+
break
|
176 |
+
|
177 |
+
self.epoch = epoch
|
178 |
+
################################# Train loop ##########################################################
|
179 |
+
if self.should_log:
|
180 |
+
wandb.log({"Epoch": epoch}, step=self.step)
|
181 |
+
pbar = tqdm(enumerate(self.train_loader), desc=f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train",
|
182 |
+
total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader)
|
183 |
+
for i, batch in pbar:
|
184 |
+
if self.should_early_stop():
|
185 |
+
print("Early stopping")
|
186 |
+
break
|
187 |
+
# print(f"Batch {self.step+1} on rank {self.config.rank}")
|
188 |
+
losses = self.train_on_batch(batch, i)
|
189 |
+
# print(f"trained batch {self.step+1} on rank {self.config.rank}")
|
190 |
+
|
191 |
+
self.raise_if_nan(losses)
|
192 |
+
if is_rank_zero(self.config) and self.config.print_losses:
|
193 |
+
pbar.set_description(
|
194 |
+
f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train. Losses: {stringify_losses(losses)}")
|
195 |
+
self.scheduler.step()
|
196 |
+
|
197 |
+
if self.should_log and self.step % 50 == 0:
|
198 |
+
wandb.log({f"Train/{name}": loss.item()
|
199 |
+
for name, loss in losses.items()}, step=self.step)
|
200 |
+
|
201 |
+
self.step += 1
|
202 |
+
|
203 |
+
########################################################################################################
|
204 |
+
|
205 |
+
if self.test_loader:
|
206 |
+
if (self.step % validate_every) == 0:
|
207 |
+
self.model.eval()
|
208 |
+
if self.should_write:
|
209 |
+
self.save_checkpoint(
|
210 |
+
f"{self.config.experiment_id}_latest.pt")
|
211 |
+
|
212 |
+
################################# Validation loop ##################################################
|
213 |
+
# validate on the entire validation set in every process but save only from rank 0, I know, inefficient, but avoids divergence of processes
|
214 |
+
metrics, test_losses = self.validate()
|
215 |
+
# print("Validated: {}".format(metrics))
|
216 |
+
if self.should_log:
|
217 |
+
wandb.log(
|
218 |
+
{f"Test/{name}": tloss for name, tloss in test_losses.items()}, step=self.step)
|
219 |
+
|
220 |
+
wandb.log({f"Metrics/{k}": v for k,
|
221 |
+
v in metrics.items()}, step=self.step)
|
222 |
+
|
223 |
+
if (metrics[self.metric_criterion] < best_loss) and self.should_write:
|
224 |
+
self.save_checkpoint(
|
225 |
+
f"{self.config.experiment_id}_best.pt")
|
226 |
+
best_loss = metrics[self.metric_criterion]
|
227 |
+
|
228 |
+
self.model.train()
|
229 |
+
|
230 |
+
if self.config.distributed:
|
231 |
+
dist.barrier()
|
232 |
+
# print(f"Validated: {metrics} on device {self.config.rank}")
|
233 |
+
|
234 |
+
# print(f"Finished step {self.step} on device {self.config.rank}")
|
235 |
+
#################################################################################################
|
236 |
+
|
237 |
+
# Save / validate at the end
|
238 |
+
self.step += 1 # log as final point
|
239 |
+
self.model.eval()
|
240 |
+
self.save_checkpoint(f"{self.config.experiment_id}_latest.pt")
|
241 |
+
if self.test_loader:
|
242 |
+
|
243 |
+
################################# Validation loop ##################################################
|
244 |
+
metrics, test_losses = self.validate()
|
245 |
+
# print("Validated: {}".format(metrics))
|
246 |
+
if self.should_log:
|
247 |
+
wandb.log({f"Test/{name}": tloss for name,
|
248 |
+
tloss in test_losses.items()}, step=self.step)
|
249 |
+
wandb.log({f"Metrics/{k}": v for k,
|
250 |
+
v in metrics.items()}, step=self.step)
|
251 |
+
|
252 |
+
if (metrics[self.metric_criterion] < best_loss) and self.should_write:
|
253 |
+
self.save_checkpoint(
|
254 |
+
f"{self.config.experiment_id}_best.pt")
|
255 |
+
best_loss = metrics[self.metric_criterion]
|
256 |
+
|
257 |
+
self.model.train()
|
258 |
+
|
259 |
+
def validate(self):
|
260 |
+
with torch.no_grad():
|
261 |
+
losses_avg = RunningAverageDict()
|
262 |
+
metrics_avg = RunningAverageDict()
|
263 |
+
for i, batch in tqdm(enumerate(self.test_loader), desc=f"Epoch: {self.epoch + 1}/{self.config.epochs}. Loop: Validation", total=len(self.test_loader), disable=not is_rank_zero(self.config)):
|
264 |
+
metrics, losses = self.validate_on_batch(batch, val_step=i)
|
265 |
+
|
266 |
+
if losses:
|
267 |
+
losses_avg.update(losses)
|
268 |
+
if metrics:
|
269 |
+
metrics_avg.update(metrics)
|
270 |
+
|
271 |
+
return metrics_avg.get_value(), losses_avg.get_value()
|
272 |
+
|
273 |
+
def save_checkpoint(self, filename):
|
274 |
+
if not self.should_write:
|
275 |
+
return
|
276 |
+
root = self.config.save_dir
|
277 |
+
if not os.path.isdir(root):
|
278 |
+
os.makedirs(root)
|
279 |
+
|
280 |
+
fpath = os.path.join(root, filename)
|
281 |
+
m = self.model.module if self.config.multigpu else self.model
|
282 |
+
torch.save(
|
283 |
+
{
|
284 |
+
"model": m.state_dict(),
|
285 |
+
"optimizer": None, # TODO : Change to self.optimizer.state_dict() if resume support is needed, currently None to reduce file size
|
286 |
+
"epoch": self.epoch
|
287 |
+
}, fpath)
|
288 |
+
|
289 |
+
def log_images(self, rgb: Dict[str, list] = {}, depth: Dict[str, list] = {}, scalar_field: Dict[str, list] = {}, prefix="", scalar_cmap="jet", min_depth=None, max_depth=None):
|
290 |
+
if not self.should_log:
|
291 |
+
return
|
292 |
+
|
293 |
+
if min_depth is None:
|
294 |
+
try:
|
295 |
+
min_depth = self.config.min_depth
|
296 |
+
max_depth = self.config.max_depth
|
297 |
+
except AttributeError:
|
298 |
+
min_depth = None
|
299 |
+
max_depth = None
|
300 |
+
|
301 |
+
depth = {k: colorize(v, vmin=min_depth, vmax=max_depth)
|
302 |
+
for k, v in depth.items()}
|
303 |
+
scalar_field = {k: colorize(
|
304 |
+
v, vmin=None, vmax=None, cmap=scalar_cmap) for k, v in scalar_field.items()}
|
305 |
+
images = {**rgb, **depth, **scalar_field}
|
306 |
+
wimages = {
|
307 |
+
prefix+"Predictions": [wandb.Image(v, caption=k) for k, v in images.items()]}
|
308 |
+
wandb.log(wimages, step=self.step)
|
309 |
+
|
310 |
+
def log_line_plot(self, data):
|
311 |
+
if not self.should_log:
|
312 |
+
return
|
313 |
+
|
314 |
+
plt.plot(data)
|
315 |
+
plt.ylabel("Scale factors")
|
316 |
+
wandb.log({"Scale factors": wandb.Image(plt)}, step=self.step)
|
317 |
+
plt.close()
|
318 |
+
|
319 |
+
def log_bar_plot(self, title, labels, values):
|
320 |
+
if not self.should_log:
|
321 |
+
return
|
322 |
+
|
323 |
+
data = [[label, val] for (label, val) in zip(labels, values)]
|
324 |
+
table = wandb.Table(data=data, columns=["label", "value"])
|
325 |
+
wandb.log({title: wandb.plot.bar(table, "label",
|
326 |
+
"value", title=title)}, step=self.step)
|
zoedepth/trainers/builder.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
from importlib import import_module
|
26 |
+
|
27 |
+
|
28 |
+
def get_trainer(config):
|
29 |
+
"""Builds and returns a trainer based on the config.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
config (dict): the config dict (typically constructed using utils.config.get_config)
|
33 |
+
config.trainer (str): the name of the trainer to use. The module named "{config.trainer}_trainer" must exist in trainers root module
|
34 |
+
|
35 |
+
Raises:
|
36 |
+
ValueError: If the specified trainer does not exist under trainers/ folder
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
Trainer (inherited from zoedepth.trainers.BaseTrainer): The Trainer object
|
40 |
+
"""
|
41 |
+
assert "trainer" in config and config.trainer is not None and config.trainer != '', "Trainer not specified. Config: {0}".format(
|
42 |
+
config)
|
43 |
+
try:
|
44 |
+
Trainer = getattr(import_module(
|
45 |
+
f"zoedepth.trainers.{config.trainer}_trainer"), 'Trainer')
|
46 |
+
except ModuleNotFoundError as e:
|
47 |
+
raise ValueError(f"Trainer {config.trainer}_trainer not found.") from e
|
48 |
+
return Trainer
|
zoedepth/trainers/loss.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.cuda.amp as amp
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
|
32 |
+
KEY_OUTPUT = 'metric_depth'
|
33 |
+
|
34 |
+
|
35 |
+
def extract_key(prediction, key):
|
36 |
+
if isinstance(prediction, dict):
|
37 |
+
return prediction[key]
|
38 |
+
return prediction
|
39 |
+
|
40 |
+
|
41 |
+
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
|
42 |
+
class SILogLoss(nn.Module):
|
43 |
+
"""SILog loss (pixel-wise)"""
|
44 |
+
def __init__(self, beta=0.15):
|
45 |
+
super(SILogLoss, self).__init__()
|
46 |
+
self.name = 'SILog'
|
47 |
+
self.beta = beta
|
48 |
+
|
49 |
+
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
|
50 |
+
input = extract_key(input, KEY_OUTPUT)
|
51 |
+
if input.shape[-1] != target.shape[-1] and interpolate:
|
52 |
+
input = nn.functional.interpolate(
|
53 |
+
input, target.shape[-2:], mode='bilinear', align_corners=True)
|
54 |
+
intr_input = input
|
55 |
+
else:
|
56 |
+
intr_input = input
|
57 |
+
|
58 |
+
if target.ndim == 3:
|
59 |
+
target = target.unsqueeze(1)
|
60 |
+
|
61 |
+
if mask is not None:
|
62 |
+
if mask.ndim == 3:
|
63 |
+
mask = mask.unsqueeze(1)
|
64 |
+
|
65 |
+
input = input[mask]
|
66 |
+
target = target[mask]
|
67 |
+
|
68 |
+
with amp.autocast(enabled=False): # amp causes NaNs in this loss function
|
69 |
+
alpha = 1e-7
|
70 |
+
g = torch.log(input + alpha) - torch.log(target + alpha)
|
71 |
+
|
72 |
+
# n, c, h, w = g.shape
|
73 |
+
# norm = 1/(h*w)
|
74 |
+
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
|
75 |
+
|
76 |
+
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
|
77 |
+
|
78 |
+
loss = 10 * torch.sqrt(Dg)
|
79 |
+
|
80 |
+
if torch.isnan(loss):
|
81 |
+
print("Nan SILog loss")
|
82 |
+
print("input:", input.shape)
|
83 |
+
print("target:", target.shape)
|
84 |
+
print("G", torch.sum(torch.isnan(g)))
|
85 |
+
print("Input min max", torch.min(input), torch.max(input))
|
86 |
+
print("Target min max", torch.min(target), torch.max(target))
|
87 |
+
print("Dg", torch.isnan(Dg))
|
88 |
+
print("loss", torch.isnan(loss))
|
89 |
+
|
90 |
+
if not return_interpolated:
|
91 |
+
return loss
|
92 |
+
|
93 |
+
return loss, intr_input
|
94 |
+
|
95 |
+
|
96 |
+
def grad(x):
|
97 |
+
# x.shape : n, c, h, w
|
98 |
+
diff_x = x[..., 1:, 1:] - x[..., 1:, :-1]
|
99 |
+
diff_y = x[..., 1:, 1:] - x[..., :-1, 1:]
|
100 |
+
mag = diff_x**2 + diff_y**2
|
101 |
+
# angle_ratio
|
102 |
+
angle = torch.atan(diff_y / (diff_x + 1e-10))
|
103 |
+
return mag, angle
|
104 |
+
|
105 |
+
|
106 |
+
def grad_mask(mask):
|
107 |
+
return mask[..., 1:, 1:] & mask[..., 1:, :-1] & mask[..., :-1, 1:]
|
108 |
+
|
109 |
+
|
110 |
+
class GradL1Loss(nn.Module):
|
111 |
+
"""Gradient loss"""
|
112 |
+
def __init__(self):
|
113 |
+
super(GradL1Loss, self).__init__()
|
114 |
+
self.name = 'GradL1'
|
115 |
+
|
116 |
+
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
|
117 |
+
input = extract_key(input, KEY_OUTPUT)
|
118 |
+
if input.shape[-1] != target.shape[-1] and interpolate:
|
119 |
+
input = nn.functional.interpolate(
|
120 |
+
input, target.shape[-2:], mode='bilinear', align_corners=True)
|
121 |
+
intr_input = input
|
122 |
+
else:
|
123 |
+
intr_input = input
|
124 |
+
|
125 |
+
grad_gt = grad(target)
|
126 |
+
grad_pred = grad(input)
|
127 |
+
mask_g = grad_mask(mask)
|
128 |
+
|
129 |
+
loss = nn.functional.l1_loss(grad_pred[0][mask_g], grad_gt[0][mask_g])
|
130 |
+
loss = loss + \
|
131 |
+
nn.functional.l1_loss(grad_pred[1][mask_g], grad_gt[1][mask_g])
|
132 |
+
if not return_interpolated:
|
133 |
+
return loss
|
134 |
+
return loss, intr_input
|
135 |
+
|
136 |
+
|
137 |
+
class OrdinalRegressionLoss(object):
|
138 |
+
|
139 |
+
def __init__(self, ord_num, beta, discretization="SID"):
|
140 |
+
self.ord_num = ord_num
|
141 |
+
self.beta = beta
|
142 |
+
self.discretization = discretization
|
143 |
+
|
144 |
+
def _create_ord_label(self, gt):
|
145 |
+
N,one, H, W = gt.shape
|
146 |
+
# print("gt shape:", gt.shape)
|
147 |
+
|
148 |
+
ord_c0 = torch.ones(N, self.ord_num, H, W).to(gt.device)
|
149 |
+
if self.discretization == "SID":
|
150 |
+
label = self.ord_num * torch.log(gt) / np.log(self.beta)
|
151 |
+
else:
|
152 |
+
label = self.ord_num * (gt - 1.0) / (self.beta - 1.0)
|
153 |
+
label = label.long()
|
154 |
+
mask = torch.linspace(0, self.ord_num - 1, self.ord_num, requires_grad=False) \
|
155 |
+
.view(1, self.ord_num, 1, 1).to(gt.device)
|
156 |
+
mask = mask.repeat(N, 1, H, W).contiguous().long()
|
157 |
+
mask = (mask > label)
|
158 |
+
ord_c0[mask] = 0
|
159 |
+
ord_c1 = 1 - ord_c0
|
160 |
+
# implementation according to the paper.
|
161 |
+
# ord_label = torch.ones(N, self.ord_num * 2, H, W).to(gt.device)
|
162 |
+
# ord_label[:, 0::2, :, :] = ord_c0
|
163 |
+
# ord_label[:, 1::2, :, :] = ord_c1
|
164 |
+
# reimplementation for fast speed.
|
165 |
+
ord_label = torch.cat((ord_c0, ord_c1), dim=1)
|
166 |
+
return ord_label, mask
|
167 |
+
|
168 |
+
def __call__(self, prob, gt):
|
169 |
+
"""
|
170 |
+
:param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor
|
171 |
+
:param gt: depth ground truth, NXHxW, torch.Tensor
|
172 |
+
:return: loss: loss value, torch.float
|
173 |
+
"""
|
174 |
+
# N, C, H, W = prob.shape
|
175 |
+
valid_mask = gt > 0.
|
176 |
+
ord_label, mask = self._create_ord_label(gt)
|
177 |
+
# print("prob shape: {}, ord label shape: {}".format(prob.shape, ord_label.shape))
|
178 |
+
entropy = -prob * ord_label
|
179 |
+
loss = torch.sum(entropy, dim=1)[valid_mask.squeeze(1)]
|
180 |
+
return loss.mean()
|
181 |
+
|
182 |
+
|
183 |
+
class DiscreteNLLLoss(nn.Module):
|
184 |
+
"""Cross entropy loss"""
|
185 |
+
def __init__(self, min_depth=1e-3, max_depth=10, depth_bins=64):
|
186 |
+
super(DiscreteNLLLoss, self).__init__()
|
187 |
+
self.name = 'CrossEntropy'
|
188 |
+
self.ignore_index = -(depth_bins + 1)
|
189 |
+
# self._loss_func = nn.NLLLoss(ignore_index=self.ignore_index)
|
190 |
+
self._loss_func = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
|
191 |
+
self.min_depth = min_depth
|
192 |
+
self.max_depth = max_depth
|
193 |
+
self.depth_bins = depth_bins
|
194 |
+
self.alpha = 1
|
195 |
+
self.zeta = 1 - min_depth
|
196 |
+
self.beta = max_depth + self.zeta
|
197 |
+
|
198 |
+
def quantize_depth(self, depth):
|
199 |
+
# depth : N1HW
|
200 |
+
# output : NCHW
|
201 |
+
|
202 |
+
# Quantize depth log-uniformly on [1, self.beta] into self.depth_bins bins
|
203 |
+
depth = torch.log(depth / self.alpha) / np.log(self.beta / self.alpha)
|
204 |
+
depth = depth * (self.depth_bins - 1)
|
205 |
+
depth = torch.round(depth)
|
206 |
+
depth = depth.long()
|
207 |
+
return depth
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
def _dequantize_depth(self, depth):
|
212 |
+
"""
|
213 |
+
Inverse of quantization
|
214 |
+
depth : NCHW -> N1HW
|
215 |
+
"""
|
216 |
+
# Get the center of the bin
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
|
222 |
+
input = extract_key(input, KEY_OUTPUT)
|
223 |
+
# assert torch.all(input <= 0), "Input should be negative"
|
224 |
+
|
225 |
+
if input.shape[-1] != target.shape[-1] and interpolate:
|
226 |
+
input = nn.functional.interpolate(
|
227 |
+
input, target.shape[-2:], mode='bilinear', align_corners=True)
|
228 |
+
intr_input = input
|
229 |
+
else:
|
230 |
+
intr_input = input
|
231 |
+
|
232 |
+
# assert torch.all(input)<=1)
|
233 |
+
if target.ndim == 3:
|
234 |
+
target = target.unsqueeze(1)
|
235 |
+
|
236 |
+
target = self.quantize_depth(target)
|
237 |
+
if mask is not None:
|
238 |
+
if mask.ndim == 3:
|
239 |
+
mask = mask.unsqueeze(1)
|
240 |
+
|
241 |
+
# Set the mask to ignore_index
|
242 |
+
mask = mask.long()
|
243 |
+
input = input * mask + (1 - mask) * self.ignore_index
|
244 |
+
target = target * mask + (1 - mask) * self.ignore_index
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
input = input.flatten(2) # N, nbins, H*W
|
249 |
+
target = target.flatten(1) # N, H*W
|
250 |
+
loss = self._loss_func(input, target)
|
251 |
+
|
252 |
+
if not return_interpolated:
|
253 |
+
return loss
|
254 |
+
return loss, intr_input
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
def compute_scale_and_shift(prediction, target, mask):
|
260 |
+
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
|
261 |
+
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
|
262 |
+
a_01 = torch.sum(mask * prediction, (1, 2))
|
263 |
+
a_11 = torch.sum(mask, (1, 2))
|
264 |
+
|
265 |
+
# right hand side: b = [b_0, b_1]
|
266 |
+
b_0 = torch.sum(mask * prediction * target, (1, 2))
|
267 |
+
b_1 = torch.sum(mask * target, (1, 2))
|
268 |
+
|
269 |
+
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
|
270 |
+
x_0 = torch.zeros_like(b_0)
|
271 |
+
x_1 = torch.zeros_like(b_1)
|
272 |
+
|
273 |
+
det = a_00 * a_11 - a_01 * a_01
|
274 |
+
# A needs to be a positive definite matrix.
|
275 |
+
valid = det > 0
|
276 |
+
|
277 |
+
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
|
278 |
+
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
|
279 |
+
|
280 |
+
return x_0, x_1
|
281 |
+
class ScaleAndShiftInvariantLoss(nn.Module):
|
282 |
+
def __init__(self):
|
283 |
+
super().__init__()
|
284 |
+
self.name = "SSILoss"
|
285 |
+
|
286 |
+
def forward(self, prediction, target, mask, interpolate=True, return_interpolated=False):
|
287 |
+
|
288 |
+
if prediction.shape[-1] != target.shape[-1] and interpolate:
|
289 |
+
prediction = nn.functional.interpolate(prediction, target.shape[-2:], mode='bilinear', align_corners=True)
|
290 |
+
intr_input = prediction
|
291 |
+
else:
|
292 |
+
intr_input = prediction
|
293 |
+
|
294 |
+
|
295 |
+
prediction, target, mask = prediction.squeeze(), target.squeeze(), mask.squeeze()
|
296 |
+
assert prediction.shape == target.shape, f"Shape mismatch: Expected same shape but got {prediction.shape} and {target.shape}."
|
297 |
+
|
298 |
+
scale, shift = compute_scale_and_shift(prediction, target, mask)
|
299 |
+
|
300 |
+
scaled_prediction = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
|
301 |
+
|
302 |
+
loss = nn.functional.l1_loss(scaled_prediction[mask], target[mask])
|
303 |
+
if not return_interpolated:
|
304 |
+
return loss
|
305 |
+
return loss, intr_input
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
if __name__ == '__main__':
|
311 |
+
# Tests for DiscreteNLLLoss
|
312 |
+
celoss = DiscreteNLLLoss()
|
313 |
+
print(celoss(torch.rand(4, 64, 26, 32)*10, torch.rand(4, 1, 26, 32)*10, ))
|
314 |
+
|
315 |
+
d = torch.Tensor([6.59, 3.8, 10.0])
|
316 |
+
print(celoss.dequantize_depth(celoss.quantize_depth(d)))
|
zoedepth/trainers/zoedepth_nk_trainer.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.cuda.amp as amp
|
27 |
+
import torch.nn as nn
|
28 |
+
|
29 |
+
from zoedepth.trainers.loss import GradL1Loss, SILogLoss
|
30 |
+
from zoedepth.utils.config import DATASETS_CONFIG
|
31 |
+
from zoedepth.utils.misc import compute_metrics
|
32 |
+
|
33 |
+
from .base_trainer import BaseTrainer
|
34 |
+
|
35 |
+
|
36 |
+
class Trainer(BaseTrainer):
|
37 |
+
def __init__(self, config, model, train_loader, test_loader=None, device=None):
|
38 |
+
super().__init__(config, model, train_loader,
|
39 |
+
test_loader=test_loader, device=device)
|
40 |
+
self.device = device
|
41 |
+
self.silog_loss = SILogLoss()
|
42 |
+
self.grad_loss = GradL1Loss()
|
43 |
+
self.domain_classifier_loss = nn.CrossEntropyLoss()
|
44 |
+
|
45 |
+
self.scaler = amp.GradScaler(enabled=self.config.use_amp)
|
46 |
+
|
47 |
+
def train_on_batch(self, batch, train_step):
|
48 |
+
"""
|
49 |
+
Expects a batch of images and depth as input
|
50 |
+
batch["image"].shape : batch_size, c, h, w
|
51 |
+
batch["depth"].shape : batch_size, 1, h, w
|
52 |
+
|
53 |
+
Assumes all images in a batch are from the same dataset
|
54 |
+
"""
|
55 |
+
|
56 |
+
images, depths_gt = batch['image'].to(
|
57 |
+
self.device), batch['depth'].to(self.device)
|
58 |
+
# batch['dataset'] is a tensor strings all valued either 'nyu' or 'kitti'. labels nyu -> 0, kitti -> 1
|
59 |
+
dataset = batch['dataset'][0]
|
60 |
+
# Convert to 0s or 1s
|
61 |
+
domain_labels = torch.Tensor([dataset == 'kitti' for _ in range(
|
62 |
+
images.size(0))]).to(torch.long).to(self.device)
|
63 |
+
|
64 |
+
# m = self.model.module if self.config.multigpu else self.model
|
65 |
+
|
66 |
+
b, c, h, w = images.size()
|
67 |
+
mask = batch["mask"].to(self.device).to(torch.bool)
|
68 |
+
|
69 |
+
losses = {}
|
70 |
+
|
71 |
+
with amp.autocast(enabled=self.config.use_amp):
|
72 |
+
output = self.model(images)
|
73 |
+
pred_depths = output['metric_depth']
|
74 |
+
domain_logits = output['domain_logits']
|
75 |
+
|
76 |
+
l_si, pred = self.silog_loss(
|
77 |
+
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
|
78 |
+
loss = self.config.w_si * l_si
|
79 |
+
losses[self.silog_loss.name] = l_si
|
80 |
+
|
81 |
+
if self.config.w_grad > 0:
|
82 |
+
l_grad = self.grad_loss(pred, depths_gt, mask=mask)
|
83 |
+
loss = loss + self.config.w_grad * l_grad
|
84 |
+
losses[self.grad_loss.name] = l_grad
|
85 |
+
else:
|
86 |
+
l_grad = torch.Tensor([0])
|
87 |
+
|
88 |
+
if self.config.w_domain > 0:
|
89 |
+
l_domain = self.domain_classifier_loss(
|
90 |
+
domain_logits, domain_labels)
|
91 |
+
loss = loss + self.config.w_domain * l_domain
|
92 |
+
losses["DomainLoss"] = l_domain
|
93 |
+
else:
|
94 |
+
l_domain = torch.Tensor([0.])
|
95 |
+
|
96 |
+
self.scaler.scale(loss).backward()
|
97 |
+
|
98 |
+
if self.config.clip_grad > 0:
|
99 |
+
self.scaler.unscale_(self.optimizer)
|
100 |
+
nn.utils.clip_grad_norm_(
|
101 |
+
self.model.parameters(), self.config.clip_grad)
|
102 |
+
|
103 |
+
self.scaler.step(self.optimizer)
|
104 |
+
|
105 |
+
if self.should_log and self.step > 1 and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0:
|
106 |
+
depths_gt[torch.logical_not(mask)] = -99
|
107 |
+
self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train",
|
108 |
+
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
|
109 |
+
|
110 |
+
self.scaler.update()
|
111 |
+
self.optimizer.zero_grad(set_to_none=True)
|
112 |
+
|
113 |
+
return losses
|
114 |
+
|
115 |
+
def validate_on_batch(self, batch, val_step):
|
116 |
+
images = batch['image'].to(self.device)
|
117 |
+
depths_gt = batch['depth'].to(self.device)
|
118 |
+
dataset = batch['dataset'][0]
|
119 |
+
if 'has_valid_depth' in batch:
|
120 |
+
if not batch['has_valid_depth']:
|
121 |
+
return None, None
|
122 |
+
|
123 |
+
depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0)
|
124 |
+
with amp.autocast(enabled=self.config.use_amp):
|
125 |
+
m = self.model.module if self.config.multigpu else self.model
|
126 |
+
pred_depths = m(images)["metric_depth"]
|
127 |
+
pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0)
|
128 |
+
|
129 |
+
mask = torch.logical_and(
|
130 |
+
depths_gt > self.config.min_depth, depths_gt < self.config.max_depth)
|
131 |
+
with amp.autocast(enabled=self.config.use_amp):
|
132 |
+
l_depth = self.silog_loss(
|
133 |
+
pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True)
|
134 |
+
|
135 |
+
metrics = compute_metrics(depths_gt, pred_depths, **self.config)
|
136 |
+
losses = {f"{self.silog_loss.name}": l_depth.item()}
|
137 |
+
|
138 |
+
if val_step == 1 and self.should_log:
|
139 |
+
depths_gt[torch.logical_not(mask)] = -99
|
140 |
+
self.log_images(rgb={"Input": images[0]}, depth={"GT": depths_gt[0], "PredictedMono": pred_depths[0]}, prefix="Test",
|
141 |
+
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
|
142 |
+
|
143 |
+
return metrics, losses
|
zoedepth/trainers/zoedepth_trainer.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.cuda.amp as amp
|
27 |
+
import torch.nn as nn
|
28 |
+
|
29 |
+
from zoedepth.trainers.loss import GradL1Loss, SILogLoss
|
30 |
+
from zoedepth.utils.config import DATASETS_CONFIG
|
31 |
+
from zoedepth.utils.misc import compute_metrics
|
32 |
+
from zoedepth.data.preprocess import get_black_border
|
33 |
+
|
34 |
+
from .base_trainer import BaseTrainer
|
35 |
+
from torchvision import transforms
|
36 |
+
from PIL import Image
|
37 |
+
import numpy as np
|
38 |
+
|
39 |
+
class Trainer(BaseTrainer):
|
40 |
+
def __init__(self, config, model, train_loader, test_loader=None, device=None):
|
41 |
+
super().__init__(config, model, train_loader,
|
42 |
+
test_loader=test_loader, device=device)
|
43 |
+
self.device = device
|
44 |
+
self.silog_loss = SILogLoss()
|
45 |
+
self.grad_loss = GradL1Loss()
|
46 |
+
self.scaler = amp.GradScaler(enabled=self.config.use_amp)
|
47 |
+
|
48 |
+
def train_on_batch(self, batch, train_step):
|
49 |
+
"""
|
50 |
+
Expects a batch of images and depth as input
|
51 |
+
batch["image"].shape : batch_size, c, h, w
|
52 |
+
batch["depth"].shape : batch_size, 1, h, w
|
53 |
+
"""
|
54 |
+
|
55 |
+
images, depths_gt = batch['image'].to(
|
56 |
+
self.device), batch['depth'].to(self.device)
|
57 |
+
dataset = batch['dataset'][0]
|
58 |
+
|
59 |
+
b, c, h, w = images.size()
|
60 |
+
mask = batch["mask"].to(self.device).to(torch.bool)
|
61 |
+
|
62 |
+
losses = {}
|
63 |
+
|
64 |
+
with amp.autocast(enabled=self.config.use_amp):
|
65 |
+
|
66 |
+
output = self.model(images)
|
67 |
+
pred_depths = output['metric_depth']
|
68 |
+
|
69 |
+
l_si, pred = self.silog_loss(
|
70 |
+
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
|
71 |
+
loss = self.config.w_si * l_si
|
72 |
+
losses[self.silog_loss.name] = l_si
|
73 |
+
|
74 |
+
if self.config.w_grad > 0:
|
75 |
+
l_grad = self.grad_loss(pred, depths_gt, mask=mask)
|
76 |
+
loss = loss + self.config.w_grad * l_grad
|
77 |
+
losses[self.grad_loss.name] = l_grad
|
78 |
+
else:
|
79 |
+
l_grad = torch.Tensor([0])
|
80 |
+
|
81 |
+
self.scaler.scale(loss).backward()
|
82 |
+
|
83 |
+
if self.config.clip_grad > 0:
|
84 |
+
self.scaler.unscale_(self.optimizer)
|
85 |
+
nn.utils.clip_grad_norm_(
|
86 |
+
self.model.parameters(), self.config.clip_grad)
|
87 |
+
|
88 |
+
self.scaler.step(self.optimizer)
|
89 |
+
|
90 |
+
if self.should_log and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0:
|
91 |
+
# -99 is treated as invalid depth in the log_images function and is colored grey.
|
92 |
+
depths_gt[torch.logical_not(mask)] = -99
|
93 |
+
|
94 |
+
self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train",
|
95 |
+
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
|
96 |
+
|
97 |
+
if self.config.get("log_rel", False):
|
98 |
+
self.log_images(
|
99 |
+
scalar_field={"RelPred": output["relative_depth"][0]}, prefix="TrainRel")
|
100 |
+
|
101 |
+
self.scaler.update()
|
102 |
+
self.optimizer.zero_grad()
|
103 |
+
|
104 |
+
return losses
|
105 |
+
|
106 |
+
@torch.no_grad()
|
107 |
+
def eval_infer(self, x):
|
108 |
+
with amp.autocast(enabled=self.config.use_amp):
|
109 |
+
m = self.model.module if self.config.multigpu else self.model
|
110 |
+
pred_depths = m(x)['metric_depth']
|
111 |
+
return pred_depths
|
112 |
+
|
113 |
+
@torch.no_grad()
|
114 |
+
def crop_aware_infer(self, x):
|
115 |
+
# if we are not avoiding the black border, we can just use the normal inference
|
116 |
+
if not self.config.get("avoid_boundary", False):
|
117 |
+
return self.eval_infer(x)
|
118 |
+
|
119 |
+
# otherwise, we need to crop the image to avoid the black border
|
120 |
+
# For now, this may be a bit slow due to converting to numpy and back
|
121 |
+
# We assume no normalization is done on the input image
|
122 |
+
|
123 |
+
# get the black border
|
124 |
+
assert x.shape[0] == 1, "Only batch size 1 is supported for now"
|
125 |
+
x_pil = transforms.ToPILImage()(x[0].cpu())
|
126 |
+
x_np = np.array(x_pil, dtype=np.uint8)
|
127 |
+
black_border_params = get_black_border(x_np)
|
128 |
+
top, bottom, left, right = black_border_params.top, black_border_params.bottom, black_border_params.left, black_border_params.right
|
129 |
+
x_np_cropped = x_np[top:bottom, left:right, :]
|
130 |
+
x_cropped = transforms.ToTensor()(Image.fromarray(x_np_cropped))
|
131 |
+
|
132 |
+
# run inference on the cropped image
|
133 |
+
pred_depths_cropped = self.eval_infer(x_cropped.unsqueeze(0).to(self.device))
|
134 |
+
|
135 |
+
# resize the prediction to x_np_cropped's size
|
136 |
+
pred_depths_cropped = nn.functional.interpolate(
|
137 |
+
pred_depths_cropped, size=(x_np_cropped.shape[0], x_np_cropped.shape[1]), mode="bilinear", align_corners=False)
|
138 |
+
|
139 |
+
|
140 |
+
# pad the prediction back to the original size
|
141 |
+
pred_depths = torch.zeros((1, 1, x_np.shape[0], x_np.shape[1]), device=pred_depths_cropped.device, dtype=pred_depths_cropped.dtype)
|
142 |
+
pred_depths[:, :, top:bottom, left:right] = pred_depths_cropped
|
143 |
+
|
144 |
+
return pred_depths
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
def validate_on_batch(self, batch, val_step):
|
149 |
+
images = batch['image'].to(self.device)
|
150 |
+
depths_gt = batch['depth'].to(self.device)
|
151 |
+
dataset = batch['dataset'][0]
|
152 |
+
mask = batch["mask"].to(self.device)
|
153 |
+
if 'has_valid_depth' in batch:
|
154 |
+
if not batch['has_valid_depth']:
|
155 |
+
return None, None
|
156 |
+
|
157 |
+
depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0)
|
158 |
+
mask = mask.squeeze().unsqueeze(0).unsqueeze(0)
|
159 |
+
if dataset == 'nyu':
|
160 |
+
pred_depths = self.crop_aware_infer(images)
|
161 |
+
else:
|
162 |
+
pred_depths = self.eval_infer(images)
|
163 |
+
pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0)
|
164 |
+
|
165 |
+
with amp.autocast(enabled=self.config.use_amp):
|
166 |
+
l_depth = self.silog_loss(
|
167 |
+
pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True)
|
168 |
+
|
169 |
+
metrics = compute_metrics(depths_gt, pred_depths, **self.config)
|
170 |
+
losses = {f"{self.silog_loss.name}": l_depth.item()}
|
171 |
+
|
172 |
+
if val_step == 1 and self.should_log:
|
173 |
+
depths_gt[torch.logical_not(mask)] = -99
|
174 |
+
self.log_images(rgb={"Input": images[0]}, depth={"GT": depths_gt[0], "PredictedMono": pred_depths[0]}, prefix="Test",
|
175 |
+
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
|
176 |
+
|
177 |
+
return metrics, losses
|
zoedepth/utils/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
zoedepth/utils/arg_utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
def infer_type(x): # hacky way to infer type from string args
|
4 |
+
if not isinstance(x, str):
|
5 |
+
return x
|
6 |
+
|
7 |
+
try:
|
8 |
+
x = int(x)
|
9 |
+
return x
|
10 |
+
except ValueError:
|
11 |
+
pass
|
12 |
+
|
13 |
+
try:
|
14 |
+
x = float(x)
|
15 |
+
return x
|
16 |
+
except ValueError:
|
17 |
+
pass
|
18 |
+
|
19 |
+
return x
|
20 |
+
|
21 |
+
|
22 |
+
def parse_unknown(unknown_args):
|
23 |
+
clean = []
|
24 |
+
for a in unknown_args:
|
25 |
+
if "=" in a:
|
26 |
+
k, v = a.split("=")
|
27 |
+
clean.extend([k, v])
|
28 |
+
else:
|
29 |
+
clean.append(a)
|
30 |
+
|
31 |
+
keys = clean[::2]
|
32 |
+
values = clean[1::2]
|
33 |
+
return {k.replace("--", ""): infer_type(v) for k, v in zip(keys, values)}
|
zoedepth/utils/config.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import json
|
26 |
+
import os
|
27 |
+
|
28 |
+
from zoedepth.utils.easydict import EasyDict as edict
|
29 |
+
|
30 |
+
from zoedepth.utils.arg_utils import infer_type
|
31 |
+
import pathlib
|
32 |
+
import platform
|
33 |
+
|
34 |
+
ROOT = pathlib.Path(__file__).parent.parent.resolve()
|
35 |
+
|
36 |
+
HOME_DIR = os.path.expanduser("~")
|
37 |
+
|
38 |
+
COMMON_CONFIG = {
|
39 |
+
"save_dir": os.path.expanduser("~/shortcuts/monodepth3_checkpoints"),
|
40 |
+
"project": "ZoeDepth",
|
41 |
+
"tags": '',
|
42 |
+
"notes": "",
|
43 |
+
"gpu": None,
|
44 |
+
"root": ".",
|
45 |
+
"uid": None,
|
46 |
+
"print_losses": False
|
47 |
+
}
|
48 |
+
|
49 |
+
DATASETS_CONFIG = {
|
50 |
+
"kitti": {
|
51 |
+
"dataset": "kitti",
|
52 |
+
"min_depth": 0.001,
|
53 |
+
"max_depth": 80,
|
54 |
+
"data_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
|
55 |
+
"gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
|
56 |
+
"filenames_file": "./train_test_inputs/kitti_eigen_train_files_with_gt.txt",
|
57 |
+
"input_height": 352,
|
58 |
+
"input_width": 1216, # 704
|
59 |
+
"data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
|
60 |
+
"gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
|
61 |
+
"filenames_file_eval": "./train_test_inputs/kitti_eigen_test_files_with_gt.txt",
|
62 |
+
|
63 |
+
"min_depth_eval": 1e-3,
|
64 |
+
"max_depth_eval": 80,
|
65 |
+
|
66 |
+
"do_random_rotate": True,
|
67 |
+
"degree": 1.0,
|
68 |
+
"do_kb_crop": True,
|
69 |
+
"garg_crop": True,
|
70 |
+
"eigen_crop": False,
|
71 |
+
"use_right": False
|
72 |
+
},
|
73 |
+
"kitti_test": {
|
74 |
+
"dataset": "kitti",
|
75 |
+
"min_depth": 0.001,
|
76 |
+
"max_depth": 80,
|
77 |
+
"data_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
|
78 |
+
"gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
|
79 |
+
"filenames_file": "./train_test_inputs/kitti_eigen_train_files_with_gt.txt",
|
80 |
+
"input_height": 352,
|
81 |
+
"input_width": 1216,
|
82 |
+
"data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
|
83 |
+
"gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
|
84 |
+
"filenames_file_eval": "./train_test_inputs/kitti_eigen_test_files_with_gt.txt",
|
85 |
+
|
86 |
+
"min_depth_eval": 1e-3,
|
87 |
+
"max_depth_eval": 80,
|
88 |
+
|
89 |
+
"do_random_rotate": False,
|
90 |
+
"degree": 1.0,
|
91 |
+
"do_kb_crop": True,
|
92 |
+
"garg_crop": True,
|
93 |
+
"eigen_crop": False,
|
94 |
+
"use_right": False
|
95 |
+
},
|
96 |
+
"nyu": {
|
97 |
+
"dataset": "nyu",
|
98 |
+
"avoid_boundary": False,
|
99 |
+
"min_depth": 1e-3, # originally 0.1
|
100 |
+
"max_depth": 10,
|
101 |
+
"data_path": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/sync/"),
|
102 |
+
"gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/sync/"),
|
103 |
+
"filenames_file": "./train_test_inputs/nyudepthv2_train_files_with_gt.txt",
|
104 |
+
"input_height": 480,
|
105 |
+
"input_width": 640,
|
106 |
+
"data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/official_splits/test/"),
|
107 |
+
"gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/official_splits/test/"),
|
108 |
+
"filenames_file_eval": "./train_test_inputs/nyudepthv2_test_files_with_gt.txt",
|
109 |
+
"min_depth_eval": 1e-3,
|
110 |
+
"max_depth_eval": 10,
|
111 |
+
"min_depth_diff": -10,
|
112 |
+
"max_depth_diff": 10,
|
113 |
+
|
114 |
+
"do_random_rotate": True,
|
115 |
+
"degree": 1.0,
|
116 |
+
"do_kb_crop": False,
|
117 |
+
"garg_crop": False,
|
118 |
+
"eigen_crop": True
|
119 |
+
},
|
120 |
+
"ibims": {
|
121 |
+
"dataset": "ibims",
|
122 |
+
"ibims_root": os.path.join(HOME_DIR, "shortcuts/datasets/ibims/ibims1_core_raw/"),
|
123 |
+
"eigen_crop": True,
|
124 |
+
"garg_crop": False,
|
125 |
+
"do_kb_crop": False,
|
126 |
+
"min_depth_eval": 0,
|
127 |
+
"max_depth_eval": 10,
|
128 |
+
"min_depth": 1e-3,
|
129 |
+
"max_depth": 10
|
130 |
+
},
|
131 |
+
"sunrgbd": {
|
132 |
+
"dataset": "sunrgbd",
|
133 |
+
"sunrgbd_root": os.path.join(HOME_DIR, "shortcuts/datasets/SUNRGBD/test/"),
|
134 |
+
"eigen_crop": True,
|
135 |
+
"garg_crop": False,
|
136 |
+
"do_kb_crop": False,
|
137 |
+
"min_depth_eval": 0,
|
138 |
+
"max_depth_eval": 8,
|
139 |
+
"min_depth": 1e-3,
|
140 |
+
"max_depth": 10
|
141 |
+
},
|
142 |
+
"diml_indoor": {
|
143 |
+
"dataset": "diml_indoor",
|
144 |
+
"diml_indoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diml_indoor_test/"),
|
145 |
+
"eigen_crop": True,
|
146 |
+
"garg_crop": False,
|
147 |
+
"do_kb_crop": False,
|
148 |
+
"min_depth_eval": 0,
|
149 |
+
"max_depth_eval": 10,
|
150 |
+
"min_depth": 1e-3,
|
151 |
+
"max_depth": 10
|
152 |
+
},
|
153 |
+
"diml_outdoor": {
|
154 |
+
"dataset": "diml_outdoor",
|
155 |
+
"diml_outdoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diml_outdoor_test/"),
|
156 |
+
"eigen_crop": False,
|
157 |
+
"garg_crop": True,
|
158 |
+
"do_kb_crop": False,
|
159 |
+
"min_depth_eval": 2,
|
160 |
+
"max_depth_eval": 80,
|
161 |
+
"min_depth": 1e-3,
|
162 |
+
"max_depth": 80
|
163 |
+
},
|
164 |
+
"diode_indoor": {
|
165 |
+
"dataset": "diode_indoor",
|
166 |
+
"diode_indoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diode_indoor/"),
|
167 |
+
"eigen_crop": True,
|
168 |
+
"garg_crop": False,
|
169 |
+
"do_kb_crop": False,
|
170 |
+
"min_depth_eval": 1e-3,
|
171 |
+
"max_depth_eval": 10,
|
172 |
+
"min_depth": 1e-3,
|
173 |
+
"max_depth": 10
|
174 |
+
},
|
175 |
+
"diode_outdoor": {
|
176 |
+
"dataset": "diode_outdoor",
|
177 |
+
"diode_outdoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diode_outdoor/"),
|
178 |
+
"eigen_crop": False,
|
179 |
+
"garg_crop": True,
|
180 |
+
"do_kb_crop": False,
|
181 |
+
"min_depth_eval": 1e-3,
|
182 |
+
"max_depth_eval": 80,
|
183 |
+
"min_depth": 1e-3,
|
184 |
+
"max_depth": 80
|
185 |
+
},
|
186 |
+
"hypersim_test": {
|
187 |
+
"dataset": "hypersim_test",
|
188 |
+
"hypersim_test_root": os.path.join(HOME_DIR, "shortcuts/datasets/hypersim_test/"),
|
189 |
+
"eigen_crop": True,
|
190 |
+
"garg_crop": False,
|
191 |
+
"do_kb_crop": False,
|
192 |
+
"min_depth_eval": 1e-3,
|
193 |
+
"max_depth_eval": 80,
|
194 |
+
"min_depth": 1e-3,
|
195 |
+
"max_depth": 10
|
196 |
+
},
|
197 |
+
"vkitti": {
|
198 |
+
"dataset": "vkitti",
|
199 |
+
"vkitti_root": os.path.join(HOME_DIR, "shortcuts/datasets/vkitti_test/"),
|
200 |
+
"eigen_crop": False,
|
201 |
+
"garg_crop": True,
|
202 |
+
"do_kb_crop": True,
|
203 |
+
"min_depth_eval": 1e-3,
|
204 |
+
"max_depth_eval": 80,
|
205 |
+
"min_depth": 1e-3,
|
206 |
+
"max_depth": 80
|
207 |
+
},
|
208 |
+
"vkitti2": {
|
209 |
+
"dataset": "vkitti2",
|
210 |
+
"vkitti2_root": os.path.join(HOME_DIR, "shortcuts/datasets/vkitti2/"),
|
211 |
+
"eigen_crop": False,
|
212 |
+
"garg_crop": True,
|
213 |
+
"do_kb_crop": True,
|
214 |
+
"min_depth_eval": 1e-3,
|
215 |
+
"max_depth_eval": 80,
|
216 |
+
"min_depth": 1e-3,
|
217 |
+
"max_depth": 80,
|
218 |
+
},
|
219 |
+
"ddad": {
|
220 |
+
"dataset": "ddad",
|
221 |
+
"ddad_root": os.path.join(HOME_DIR, "shortcuts/datasets/ddad/ddad_val/"),
|
222 |
+
"eigen_crop": False,
|
223 |
+
"garg_crop": True,
|
224 |
+
"do_kb_crop": True,
|
225 |
+
"min_depth_eval": 1e-3,
|
226 |
+
"max_depth_eval": 80,
|
227 |
+
"min_depth": 1e-3,
|
228 |
+
"max_depth": 80,
|
229 |
+
},
|
230 |
+
}
|
231 |
+
|
232 |
+
ALL_INDOOR = ["nyu", "ibims", "sunrgbd", "diode_indoor", "hypersim_test"]
|
233 |
+
ALL_OUTDOOR = ["kitti", "diml_outdoor", "diode_outdoor", "vkitti2", "ddad"]
|
234 |
+
ALL_EVAL_DATASETS = ALL_INDOOR + ALL_OUTDOOR
|
235 |
+
|
236 |
+
COMMON_TRAINING_CONFIG = {
|
237 |
+
"dataset": "nyu",
|
238 |
+
"distributed": True,
|
239 |
+
"workers": 16,
|
240 |
+
"clip_grad": 0.1,
|
241 |
+
"use_shared_dict": False,
|
242 |
+
"shared_dict": None,
|
243 |
+
"use_amp": False,
|
244 |
+
|
245 |
+
"aug": True,
|
246 |
+
"random_crop": False,
|
247 |
+
"random_translate": False,
|
248 |
+
"translate_prob": 0.2,
|
249 |
+
"max_translation": 100,
|
250 |
+
|
251 |
+
"validate_every": 0.25,
|
252 |
+
"log_images_every": 0.1,
|
253 |
+
"prefetch": False,
|
254 |
+
}
|
255 |
+
|
256 |
+
|
257 |
+
def flatten(config, except_keys=('bin_conf')):
|
258 |
+
def recurse(inp):
|
259 |
+
if isinstance(inp, dict):
|
260 |
+
for key, value in inp.items():
|
261 |
+
if key in except_keys:
|
262 |
+
yield (key, value)
|
263 |
+
if isinstance(value, dict):
|
264 |
+
yield from recurse(value)
|
265 |
+
else:
|
266 |
+
yield (key, value)
|
267 |
+
|
268 |
+
return dict(list(recurse(config)))
|
269 |
+
|
270 |
+
|
271 |
+
def split_combined_args(kwargs):
|
272 |
+
"""Splits the arguments that are combined with '__' into multiple arguments.
|
273 |
+
Combined arguments should have equal number of keys and values.
|
274 |
+
Keys are separated by '__' and Values are separated with ';'.
|
275 |
+
For example, '__n_bins__lr=256;0.001'
|
276 |
+
|
277 |
+
Args:
|
278 |
+
kwargs (dict): key-value pairs of arguments where key-value is optionally combined according to the above format.
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
dict: Parsed dict with the combined arguments split into individual key-value pairs.
|
282 |
+
"""
|
283 |
+
new_kwargs = dict(kwargs)
|
284 |
+
for key, value in kwargs.items():
|
285 |
+
if key.startswith("__"):
|
286 |
+
keys = key.split("__")[1:]
|
287 |
+
values = value.split(";")
|
288 |
+
assert len(keys) == len(
|
289 |
+
values), f"Combined arguments should have equal number of keys and values. Keys are separated by '__' and Values are separated with ';'. For example, '__n_bins__lr=256;0.001. Given (keys,values) is ({keys}, {values})"
|
290 |
+
for k, v in zip(keys, values):
|
291 |
+
new_kwargs[k] = v
|
292 |
+
return new_kwargs
|
293 |
+
|
294 |
+
|
295 |
+
def parse_list(config, key, dtype=int):
|
296 |
+
"""Parse a list of values for the key if the value is a string. The values are separated by a comma.
|
297 |
+
Modifies the config in place.
|
298 |
+
"""
|
299 |
+
if key in config:
|
300 |
+
if isinstance(config[key], str):
|
301 |
+
config[key] = list(map(dtype, config[key].split(',')))
|
302 |
+
assert isinstance(config[key], list) and all([isinstance(e, dtype) for e in config[key]]
|
303 |
+
), f"{key} should be a list of values dtype {dtype}. Given {config[key]} of type {type(config[key])} with values of type {[type(e) for e in config[key]]}."
|
304 |
+
|
305 |
+
|
306 |
+
def get_model_config(model_name, model_version=None):
|
307 |
+
"""Find and parse the .json config file for the model.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
model_name (str): name of the model. The config file should be named config_{model_name}[_{model_version}].json under the models/{model_name} directory.
|
311 |
+
model_version (str, optional): Specific config version. If specified config_{model_name}_{model_version}.json is searched for and used. Otherwise config_{model_name}.json is used. Defaults to None.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
easydict: the config dictionary for the model.
|
315 |
+
"""
|
316 |
+
config_fname = f"config_{model_name}_{model_version}.json" if model_version is not None else f"config_{model_name}.json"
|
317 |
+
config_file = os.path.join(ROOT, "models", model_name, config_fname)
|
318 |
+
if not os.path.exists(config_file):
|
319 |
+
return None
|
320 |
+
|
321 |
+
with open(config_file, "r") as f:
|
322 |
+
config = edict(json.load(f))
|
323 |
+
|
324 |
+
# handle dictionary inheritance
|
325 |
+
# only training config is supported for inheritance
|
326 |
+
if "inherit" in config.train and config.train.inherit is not None:
|
327 |
+
inherit_config = get_model_config(config.train["inherit"]).train
|
328 |
+
for key, value in inherit_config.items():
|
329 |
+
if key not in config.train:
|
330 |
+
config.train[key] = value
|
331 |
+
return edict(config)
|
332 |
+
|
333 |
+
|
334 |
+
def update_model_config(config, mode, model_name, model_version=None, strict=False):
|
335 |
+
model_config = get_model_config(model_name, model_version)
|
336 |
+
if model_config is not None:
|
337 |
+
config = {**config, **
|
338 |
+
flatten({**model_config.model, **model_config[mode]})}
|
339 |
+
elif strict:
|
340 |
+
raise ValueError(f"Config file for model {model_name} not found.")
|
341 |
+
return config
|
342 |
+
|
343 |
+
|
344 |
+
def check_choices(name, value, choices):
|
345 |
+
# return # No checks in dev branch
|
346 |
+
if value not in choices:
|
347 |
+
raise ValueError(f"{name} {value} not in supported choices {choices}")
|
348 |
+
|
349 |
+
|
350 |
+
KEYS_TYPE_BOOL = ["use_amp", "distributed", "use_shared_dict", "same_lr", "aug", "three_phase",
|
351 |
+
"prefetch", "cycle_momentum"] # Casting is not necessary as their int casted values in config are 0 or 1
|
352 |
+
|
353 |
+
|
354 |
+
def get_config(model_name, mode='train', dataset=None, **overwrite_kwargs):
|
355 |
+
"""Main entry point to get the config for the model.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
model_name (str): name of the desired model.
|
359 |
+
mode (str, optional): "train" or "infer". Defaults to 'train'.
|
360 |
+
dataset (str, optional): If specified, the corresponding dataset configuration is loaded as well. Defaults to None.
|
361 |
+
|
362 |
+
Keyword Args: key-value pairs of arguments to overwrite the default config.
|
363 |
+
|
364 |
+
The order of precedence for overwriting the config is (Higher precedence first):
|
365 |
+
# 1. overwrite_kwargs
|
366 |
+
# 2. "config_version": Config file version if specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{config_version}.json
|
367 |
+
# 3. "version_name": Default Model version specific config specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{version_name}.json
|
368 |
+
# 4. common_config: Default config for all models specified in COMMON_CONFIG
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
easydict: The config dictionary for the model.
|
372 |
+
"""
|
373 |
+
|
374 |
+
|
375 |
+
check_choices("Model", model_name, ["zoedepth", "zoedepth_nk"])
|
376 |
+
check_choices("Mode", mode, ["train", "infer", "eval"])
|
377 |
+
if mode == "train":
|
378 |
+
check_choices("Dataset", dataset, ["nyu", "kitti", "mix", None])
|
379 |
+
|
380 |
+
config = flatten({**COMMON_CONFIG, **COMMON_TRAINING_CONFIG})
|
381 |
+
config = update_model_config(config, mode, model_name)
|
382 |
+
|
383 |
+
# update with model version specific config
|
384 |
+
version_name = overwrite_kwargs.get("version_name", config["version_name"])
|
385 |
+
config = update_model_config(config, mode, model_name, version_name)
|
386 |
+
|
387 |
+
# update with config version if specified
|
388 |
+
config_version = overwrite_kwargs.get("config_version", None)
|
389 |
+
if config_version is not None:
|
390 |
+
print("Overwriting config with config_version", config_version)
|
391 |
+
config = update_model_config(config, mode, model_name, config_version)
|
392 |
+
|
393 |
+
# update with overwrite_kwargs
|
394 |
+
# Combined args are useful for hyperparameter search
|
395 |
+
overwrite_kwargs = split_combined_args(overwrite_kwargs)
|
396 |
+
config = {**config, **overwrite_kwargs}
|
397 |
+
|
398 |
+
# Casting to bool # TODO: Not necessary. Remove and test
|
399 |
+
for key in KEYS_TYPE_BOOL:
|
400 |
+
if key in config:
|
401 |
+
config[key] = bool(config[key])
|
402 |
+
|
403 |
+
# Model specific post processing of config
|
404 |
+
parse_list(config, "n_attractors")
|
405 |
+
|
406 |
+
# adjust n_bins for each bin configuration if bin_conf is given and n_bins is passed in overwrite_kwargs
|
407 |
+
if 'bin_conf' in config and 'n_bins' in overwrite_kwargs:
|
408 |
+
bin_conf = config['bin_conf'] # list of dicts
|
409 |
+
n_bins = overwrite_kwargs['n_bins']
|
410 |
+
new_bin_conf = []
|
411 |
+
for conf in bin_conf:
|
412 |
+
conf['n_bins'] = n_bins
|
413 |
+
new_bin_conf.append(conf)
|
414 |
+
config['bin_conf'] = new_bin_conf
|
415 |
+
|
416 |
+
if mode == "train":
|
417 |
+
orig_dataset = dataset
|
418 |
+
if dataset == "mix":
|
419 |
+
dataset = 'nyu' # Use nyu as default for mix. Dataset config is changed accordingly while loading the dataloader
|
420 |
+
if dataset is not None:
|
421 |
+
config['project'] = f"MonoDepth3-{orig_dataset}" # Set project for wandb
|
422 |
+
|
423 |
+
if dataset is not None:
|
424 |
+
config['dataset'] = dataset
|
425 |
+
config = {**DATASETS_CONFIG[dataset], **config}
|
426 |
+
|
427 |
+
|
428 |
+
config['model'] = model_name
|
429 |
+
typed_config = {k: infer_type(v) for k, v in config.items()}
|
430 |
+
# add hostname to config
|
431 |
+
config['hostname'] = platform.node()
|
432 |
+
return edict(typed_config)
|
433 |
+
|
434 |
+
|
435 |
+
def change_dataset(config, new_dataset):
|
436 |
+
config.update(DATASETS_CONFIG[new_dataset])
|
437 |
+
return config
|
zoedepth/utils/easydict/__init__.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
EasyDict
|
3 |
+
Copy/pasted from https://github.com/makinacorpus/easydict
|
4 |
+
Original author: Mathieu Leplatre <mathieu.leplatre@makina-corpus.com>
|
5 |
+
"""
|
6 |
+
|
7 |
+
class EasyDict(dict):
|
8 |
+
"""
|
9 |
+
Get attributes
|
10 |
+
|
11 |
+
>>> d = EasyDict({'foo':3})
|
12 |
+
>>> d['foo']
|
13 |
+
3
|
14 |
+
>>> d.foo
|
15 |
+
3
|
16 |
+
>>> d.bar
|
17 |
+
Traceback (most recent call last):
|
18 |
+
...
|
19 |
+
AttributeError: 'EasyDict' object has no attribute 'bar'
|
20 |
+
|
21 |
+
Works recursively
|
22 |
+
|
23 |
+
>>> d = EasyDict({'foo':3, 'bar':{'x':1, 'y':2}})
|
24 |
+
>>> isinstance(d.bar, dict)
|
25 |
+
True
|
26 |
+
>>> d.bar.x
|
27 |
+
1
|
28 |
+
|
29 |
+
Bullet-proof
|
30 |
+
|
31 |
+
>>> EasyDict({})
|
32 |
+
{}
|
33 |
+
>>> EasyDict(d={})
|
34 |
+
{}
|
35 |
+
>>> EasyDict(None)
|
36 |
+
{}
|
37 |
+
>>> d = {'a': 1}
|
38 |
+
>>> EasyDict(**d)
|
39 |
+
{'a': 1}
|
40 |
+
>>> EasyDict((('a', 1), ('b', 2)))
|
41 |
+
{'a': 1, 'b': 2}
|
42 |
+
|
43 |
+
Set attributes
|
44 |
+
|
45 |
+
>>> d = EasyDict()
|
46 |
+
>>> d.foo = 3
|
47 |
+
>>> d.foo
|
48 |
+
3
|
49 |
+
>>> d.bar = {'prop': 'value'}
|
50 |
+
>>> d.bar.prop
|
51 |
+
'value'
|
52 |
+
>>> d
|
53 |
+
{'foo': 3, 'bar': {'prop': 'value'}}
|
54 |
+
>>> d.bar.prop = 'newer'
|
55 |
+
>>> d.bar.prop
|
56 |
+
'newer'
|
57 |
+
|
58 |
+
|
59 |
+
Values extraction
|
60 |
+
|
61 |
+
>>> d = EasyDict({'foo':0, 'bar':[{'x':1, 'y':2}, {'x':3, 'y':4}]})
|
62 |
+
>>> isinstance(d.bar, list)
|
63 |
+
True
|
64 |
+
>>> from operator import attrgetter
|
65 |
+
>>> list(map(attrgetter('x'), d.bar))
|
66 |
+
[1, 3]
|
67 |
+
>>> list(map(attrgetter('y'), d.bar))
|
68 |
+
[2, 4]
|
69 |
+
>>> d = EasyDict()
|
70 |
+
>>> list(d.keys())
|
71 |
+
[]
|
72 |
+
>>> d = EasyDict(foo=3, bar=dict(x=1, y=2))
|
73 |
+
>>> d.foo
|
74 |
+
3
|
75 |
+
>>> d.bar.x
|
76 |
+
1
|
77 |
+
|
78 |
+
Still like a dict though
|
79 |
+
|
80 |
+
>>> o = EasyDict({'clean':True})
|
81 |
+
>>> list(o.items())
|
82 |
+
[('clean', True)]
|
83 |
+
|
84 |
+
And like a class
|
85 |
+
|
86 |
+
>>> class Flower(EasyDict):
|
87 |
+
... power = 1
|
88 |
+
...
|
89 |
+
>>> f = Flower()
|
90 |
+
>>> f.power
|
91 |
+
1
|
92 |
+
>>> f = Flower({'height': 12})
|
93 |
+
>>> f.height
|
94 |
+
12
|
95 |
+
>>> f['power']
|
96 |
+
1
|
97 |
+
>>> sorted(f.keys())
|
98 |
+
['height', 'power']
|
99 |
+
|
100 |
+
update and pop items
|
101 |
+
>>> d = EasyDict(a=1, b='2')
|
102 |
+
>>> e = EasyDict(c=3.0, a=9.0)
|
103 |
+
>>> d.update(e)
|
104 |
+
>>> d.c
|
105 |
+
3.0
|
106 |
+
>>> d['c']
|
107 |
+
3.0
|
108 |
+
>>> d.get('c')
|
109 |
+
3.0
|
110 |
+
>>> d.update(a=4, b=4)
|
111 |
+
>>> d.b
|
112 |
+
4
|
113 |
+
>>> d.pop('a')
|
114 |
+
4
|
115 |
+
>>> d.a
|
116 |
+
Traceback (most recent call last):
|
117 |
+
...
|
118 |
+
AttributeError: 'EasyDict' object has no attribute 'a'
|
119 |
+
"""
|
120 |
+
def __init__(self, d=None, **kwargs):
|
121 |
+
if d is None:
|
122 |
+
d = {}
|
123 |
+
else:
|
124 |
+
d = dict(d)
|
125 |
+
if kwargs:
|
126 |
+
d.update(**kwargs)
|
127 |
+
for k, v in d.items():
|
128 |
+
setattr(self, k, v)
|
129 |
+
# Class attributes
|
130 |
+
for k in self.__class__.__dict__.keys():
|
131 |
+
if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'):
|
132 |
+
setattr(self, k, getattr(self, k))
|
133 |
+
|
134 |
+
def __setattr__(self, name, value):
|
135 |
+
if isinstance(value, (list, tuple)):
|
136 |
+
value = [self.__class__(x)
|
137 |
+
if isinstance(x, dict) else x for x in value]
|
138 |
+
elif isinstance(value, dict) and not isinstance(value, self.__class__):
|
139 |
+
value = self.__class__(value)
|
140 |
+
super(EasyDict, self).__setattr__(name, value)
|
141 |
+
super(EasyDict, self).__setitem__(name, value)
|
142 |
+
|
143 |
+
__setitem__ = __setattr__
|
144 |
+
|
145 |
+
def update(self, e=None, **f):
|
146 |
+
d = e or dict()
|
147 |
+
d.update(f)
|
148 |
+
for k in d:
|
149 |
+
setattr(self, k, d[k])
|
150 |
+
|
151 |
+
def pop(self, k, d=None):
|
152 |
+
delattr(self, k)
|
153 |
+
return super(EasyDict, self).pop(k, d)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
import doctest
|
158 |
+
doctest.testmod()
|
zoedepth/utils/geometry.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
def get_intrinsics(H,W):
|
28 |
+
"""
|
29 |
+
Intrinsics for a pinhole camera model.
|
30 |
+
Assume fov of 55 degrees and central principal point.
|
31 |
+
"""
|
32 |
+
f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0)
|
33 |
+
cx = 0.5 * W
|
34 |
+
cy = 0.5 * H
|
35 |
+
return np.array([[f, 0, cx],
|
36 |
+
[0, f, cy],
|
37 |
+
[0, 0, 1]])
|
38 |
+
|
39 |
+
def depth_to_points(depth, R=None, t=None):
|
40 |
+
|
41 |
+
K = get_intrinsics(depth.shape[1], depth.shape[2])
|
42 |
+
Kinv = np.linalg.inv(K)
|
43 |
+
if R is None:
|
44 |
+
R = np.eye(3)
|
45 |
+
if t is None:
|
46 |
+
t = np.zeros(3)
|
47 |
+
|
48 |
+
# M converts from your coordinate to PyTorch3D's coordinate system
|
49 |
+
M = np.eye(3)
|
50 |
+
M[0, 0] = -1.0
|
51 |
+
M[1, 1] = -1.0
|
52 |
+
|
53 |
+
height, width = depth.shape[1:3]
|
54 |
+
|
55 |
+
x = np.arange(width)
|
56 |
+
y = np.arange(height)
|
57 |
+
coord = np.stack(np.meshgrid(x, y), -1)
|
58 |
+
coord = np.concatenate((coord, np.ones_like(coord)[:, :, [0]]), -1) # z=1
|
59 |
+
coord = coord.astype(np.float32)
|
60 |
+
# coord = torch.as_tensor(coord, dtype=torch.float32, device=device)
|
61 |
+
coord = coord[None] # bs, h, w, 3
|
62 |
+
|
63 |
+
D = depth[:, :, :, None, None]
|
64 |
+
# print(D.shape, Kinv[None, None, None, ...].shape, coord[:, :, :, :, None].shape )
|
65 |
+
pts3D_1 = D * Kinv[None, None, None, ...] @ coord[:, :, :, :, None]
|
66 |
+
# pts3D_1 live in your coordinate system. Convert them to Py3D's
|
67 |
+
pts3D_1 = M[None, None, None, ...] @ pts3D_1
|
68 |
+
# from reference to targe tviewpoint
|
69 |
+
pts3D_2 = R[None, None, None, ...] @ pts3D_1 + t[None, None, None, :, None]
|
70 |
+
# pts3D_2 = pts3D_1
|
71 |
+
# depth_2 = pts3D_2[:, :, :, 2, :] # b,1,h,w
|
72 |
+
return pts3D_2[:, :, :, :3, 0][0]
|
73 |
+
|
74 |
+
|
75 |
+
def create_triangles(h, w, mask=None):
|
76 |
+
"""
|
77 |
+
Reference: https://github.com/google-research/google-research/blob/e96197de06613f1b027d20328e06d69829fa5a89/infinite_nature/render_utils.py#L68
|
78 |
+
Creates mesh triangle indices from a given pixel grid size.
|
79 |
+
This function is not and need not be differentiable as triangle indices are
|
80 |
+
fixed.
|
81 |
+
Args:
|
82 |
+
h: (int) denoting the height of the image.
|
83 |
+
w: (int) denoting the width of the image.
|
84 |
+
Returns:
|
85 |
+
triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3)
|
86 |
+
"""
|
87 |
+
x, y = np.meshgrid(range(w - 1), range(h - 1))
|
88 |
+
tl = y * w + x
|
89 |
+
tr = y * w + x + 1
|
90 |
+
bl = (y + 1) * w + x
|
91 |
+
br = (y + 1) * w + x + 1
|
92 |
+
triangles = np.array([tl, bl, tr, br, tr, bl])
|
93 |
+
triangles = np.transpose(triangles, (1, 2, 0)).reshape(
|
94 |
+
((w - 1) * (h - 1) * 2, 3))
|
95 |
+
if mask is not None:
|
96 |
+
mask = mask.reshape(-1)
|
97 |
+
triangles = triangles[mask[triangles].all(1)]
|
98 |
+
return triangles
|
zoedepth/utils/misc.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
# File author: Shariq Farooq Bhat
|
24 |
+
|
25 |
+
"""Miscellaneous utility functions."""
|
26 |
+
|
27 |
+
from scipy import ndimage
|
28 |
+
|
29 |
+
import base64
|
30 |
+
import math
|
31 |
+
import re
|
32 |
+
from io import BytesIO
|
33 |
+
|
34 |
+
import matplotlib
|
35 |
+
import matplotlib.cm
|
36 |
+
import numpy as np
|
37 |
+
import requests
|
38 |
+
import torch
|
39 |
+
import torch.distributed as dist
|
40 |
+
import torch.nn
|
41 |
+
import torch.nn as nn
|
42 |
+
import torch.utils.data.distributed
|
43 |
+
from PIL import Image
|
44 |
+
from torchvision.transforms import ToTensor
|
45 |
+
|
46 |
+
|
47 |
+
class RunningAverage:
|
48 |
+
def __init__(self):
|
49 |
+
self.avg = 0
|
50 |
+
self.count = 0
|
51 |
+
|
52 |
+
def append(self, value):
|
53 |
+
self.avg = (value + self.count * self.avg) / (self.count + 1)
|
54 |
+
self.count += 1
|
55 |
+
|
56 |
+
def get_value(self):
|
57 |
+
return self.avg
|
58 |
+
|
59 |
+
|
60 |
+
def denormalize(x):
|
61 |
+
"""Reverses the imagenet normalization applied to the input.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
x (torch.Tensor - shape(N,3,H,W)): input tensor
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
torch.Tensor - shape(N,3,H,W): Denormalized input
|
68 |
+
"""
|
69 |
+
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
|
70 |
+
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
|
71 |
+
return x * std + mean
|
72 |
+
|
73 |
+
|
74 |
+
class RunningAverageDict:
|
75 |
+
"""A dictionary of running averages."""
|
76 |
+
def __init__(self):
|
77 |
+
self._dict = None
|
78 |
+
|
79 |
+
def update(self, new_dict):
|
80 |
+
if new_dict is None:
|
81 |
+
return
|
82 |
+
|
83 |
+
if self._dict is None:
|
84 |
+
self._dict = dict()
|
85 |
+
for key, value in new_dict.items():
|
86 |
+
self._dict[key] = RunningAverage()
|
87 |
+
|
88 |
+
for key, value in new_dict.items():
|
89 |
+
self._dict[key].append(value)
|
90 |
+
|
91 |
+
def get_value(self):
|
92 |
+
if self._dict is None:
|
93 |
+
return None
|
94 |
+
return {key: value.get_value() for key, value in self._dict.items()}
|
95 |
+
|
96 |
+
|
97 |
+
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
98 |
+
"""Converts a depth map to a color image.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
|
102 |
+
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
|
103 |
+
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
|
104 |
+
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
|
105 |
+
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
|
106 |
+
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
|
107 |
+
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
|
108 |
+
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
|
109 |
+
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
|
113 |
+
"""
|
114 |
+
if isinstance(value, torch.Tensor):
|
115 |
+
value = value.detach().cpu().numpy()
|
116 |
+
|
117 |
+
value = value.squeeze()
|
118 |
+
if invalid_mask is None:
|
119 |
+
invalid_mask = value == invalid_val
|
120 |
+
mask = np.logical_not(invalid_mask)
|
121 |
+
|
122 |
+
# normalize
|
123 |
+
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
124 |
+
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
125 |
+
if vmin != vmax:
|
126 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
127 |
+
else:
|
128 |
+
# Avoid 0-division
|
129 |
+
value = value * 0.
|
130 |
+
|
131 |
+
# squeeze last dim if it exists
|
132 |
+
# grey out the invalid values
|
133 |
+
|
134 |
+
value[invalid_mask] = np.nan
|
135 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
136 |
+
if value_transform:
|
137 |
+
value = value_transform(value)
|
138 |
+
# value = value / value.max()
|
139 |
+
value = cmapper(value, bytes=True) # (nxmx4)
|
140 |
+
|
141 |
+
# img = value[:, :, :]
|
142 |
+
img = value[...]
|
143 |
+
img[invalid_mask] = background_color
|
144 |
+
|
145 |
+
# return img.transpose((2, 0, 1))
|
146 |
+
if gamma_corrected:
|
147 |
+
# gamma correction
|
148 |
+
img = img / 255
|
149 |
+
img = np.power(img, 2.2)
|
150 |
+
img = img * 255
|
151 |
+
img = img.astype(np.uint8)
|
152 |
+
return img
|
153 |
+
|
154 |
+
|
155 |
+
def count_parameters(model, include_all=False):
|
156 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad or include_all)
|
157 |
+
|
158 |
+
|
159 |
+
def compute_errors(gt, pred):
|
160 |
+
"""Compute metrics for 'pred' compared to 'gt'
|
161 |
+
|
162 |
+
Args:
|
163 |
+
gt (numpy.ndarray): Ground truth values
|
164 |
+
pred (numpy.ndarray): Predicted values
|
165 |
+
|
166 |
+
gt.shape should be equal to pred.shape
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
dict: Dictionary containing the following metrics:
|
170 |
+
'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25
|
171 |
+
'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2
|
172 |
+
'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3
|
173 |
+
'abs_rel': Absolute relative error
|
174 |
+
'rmse': Root mean squared error
|
175 |
+
'log_10': Absolute log10 error
|
176 |
+
'sq_rel': Squared relative error
|
177 |
+
'rmse_log': Root mean squared error on the log scale
|
178 |
+
'silog': Scale invariant log error
|
179 |
+
"""
|
180 |
+
thresh = np.maximum((gt / pred), (pred / gt))
|
181 |
+
a1 = (thresh < 1.25).mean()
|
182 |
+
a2 = (thresh < 1.25 ** 2).mean()
|
183 |
+
a3 = (thresh < 1.25 ** 3).mean()
|
184 |
+
|
185 |
+
abs_rel = np.mean(np.abs(gt - pred) / gt)
|
186 |
+
sq_rel = np.mean(((gt - pred) ** 2) / gt)
|
187 |
+
|
188 |
+
rmse = (gt - pred) ** 2
|
189 |
+
rmse = np.sqrt(rmse.mean())
|
190 |
+
|
191 |
+
rmse_log = (np.log(gt) - np.log(pred)) ** 2
|
192 |
+
rmse_log = np.sqrt(rmse_log.mean())
|
193 |
+
|
194 |
+
err = np.log(pred) - np.log(gt)
|
195 |
+
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100
|
196 |
+
|
197 |
+
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean()
|
198 |
+
return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log,
|
199 |
+
silog=silog, sq_rel=sq_rel)
|
200 |
+
|
201 |
+
|
202 |
+
def compute_metrics(gt, pred, interpolate=True, garg_crop=False, eigen_crop=True, dataset='nyu', min_depth_eval=0.1, max_depth_eval=10, **kwargs):
|
203 |
+
"""Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics.
|
204 |
+
"""
|
205 |
+
if 'config' in kwargs:
|
206 |
+
config = kwargs['config']
|
207 |
+
garg_crop = config.garg_crop
|
208 |
+
eigen_crop = config.eigen_crop
|
209 |
+
min_depth_eval = config.min_depth_eval
|
210 |
+
max_depth_eval = config.max_depth_eval
|
211 |
+
|
212 |
+
if gt.shape[-2:] != pred.shape[-2:] and interpolate:
|
213 |
+
pred = nn.functional.interpolate(
|
214 |
+
pred, gt.shape[-2:], mode='bilinear', align_corners=True)
|
215 |
+
|
216 |
+
pred = pred.squeeze().cpu().numpy()
|
217 |
+
pred[pred < min_depth_eval] = min_depth_eval
|
218 |
+
pred[pred > max_depth_eval] = max_depth_eval
|
219 |
+
pred[np.isinf(pred)] = max_depth_eval
|
220 |
+
pred[np.isnan(pred)] = min_depth_eval
|
221 |
+
|
222 |
+
gt_depth = gt.squeeze().cpu().numpy()
|
223 |
+
valid_mask = np.logical_and(
|
224 |
+
gt_depth > min_depth_eval, gt_depth < max_depth_eval)
|
225 |
+
|
226 |
+
if garg_crop or eigen_crop:
|
227 |
+
gt_height, gt_width = gt_depth.shape
|
228 |
+
eval_mask = np.zeros(valid_mask.shape)
|
229 |
+
|
230 |
+
if garg_crop:
|
231 |
+
eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height),
|
232 |
+
int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1
|
233 |
+
|
234 |
+
elif eigen_crop:
|
235 |
+
# print("-"*10, " EIGEN CROP ", "-"*10)
|
236 |
+
if dataset == 'kitti':
|
237 |
+
eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height),
|
238 |
+
int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1
|
239 |
+
else:
|
240 |
+
# assert gt_depth.shape == (480, 640), "Error: Eigen crop is currently only valid for (480, 640) images"
|
241 |
+
eval_mask[45:471, 41:601] = 1
|
242 |
+
else:
|
243 |
+
eval_mask = np.ones(valid_mask.shape)
|
244 |
+
valid_mask = np.logical_and(valid_mask, eval_mask)
|
245 |
+
return compute_errors(gt_depth[valid_mask], pred[valid_mask])
|
246 |
+
|
247 |
+
|
248 |
+
#################################### Model uilts ################################################
|
249 |
+
|
250 |
+
|
251 |
+
def parallelize(config, model, find_unused_parameters=True):
|
252 |
+
|
253 |
+
if config.gpu is not None:
|
254 |
+
torch.cuda.set_device(config.gpu)
|
255 |
+
model = model.cuda(config.gpu)
|
256 |
+
|
257 |
+
config.multigpu = False
|
258 |
+
if config.distributed:
|
259 |
+
# Use DDP
|
260 |
+
config.multigpu = True
|
261 |
+
config.rank = config.rank * config.ngpus_per_node + config.gpu
|
262 |
+
dist.init_process_group(backend=config.dist_backend, init_method=config.dist_url,
|
263 |
+
world_size=config.world_size, rank=config.rank)
|
264 |
+
config.batch_size = int(config.batch_size / config.ngpus_per_node)
|
265 |
+
# config.batch_size = 8
|
266 |
+
config.workers = int(
|
267 |
+
(config.num_workers + config.ngpus_per_node - 1) / config.ngpus_per_node)
|
268 |
+
print("Device", config.gpu, "Rank", config.rank, "batch size",
|
269 |
+
config.batch_size, "Workers", config.workers)
|
270 |
+
torch.cuda.set_device(config.gpu)
|
271 |
+
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
272 |
+
model = model.cuda(config.gpu)
|
273 |
+
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.gpu], output_device=config.gpu,
|
274 |
+
find_unused_parameters=find_unused_parameters)
|
275 |
+
|
276 |
+
elif config.gpu is None:
|
277 |
+
# Use DP
|
278 |
+
config.multigpu = True
|
279 |
+
model = model.cuda()
|
280 |
+
model = torch.nn.DataParallel(model)
|
281 |
+
|
282 |
+
return model
|
283 |
+
|
284 |
+
|
285 |
+
#################################################################################################
|
286 |
+
|
287 |
+
|
288 |
+
#####################################################################################################
|
289 |
+
|
290 |
+
|
291 |
+
class colors:
|
292 |
+
'''Colors class:
|
293 |
+
Reset all colors with colors.reset
|
294 |
+
Two subclasses fg for foreground and bg for background.
|
295 |
+
Use as colors.subclass.colorname.
|
296 |
+
i.e. colors.fg.red or colors.bg.green
|
297 |
+
Also, the generic bold, disable, underline, reverse, strikethrough,
|
298 |
+
and invisible work with the main class
|
299 |
+
i.e. colors.bold
|
300 |
+
'''
|
301 |
+
reset = '\033[0m'
|
302 |
+
bold = '\033[01m'
|
303 |
+
disable = '\033[02m'
|
304 |
+
underline = '\033[04m'
|
305 |
+
reverse = '\033[07m'
|
306 |
+
strikethrough = '\033[09m'
|
307 |
+
invisible = '\033[08m'
|
308 |
+
|
309 |
+
class fg:
|
310 |
+
black = '\033[30m'
|
311 |
+
red = '\033[31m'
|
312 |
+
green = '\033[32m'
|
313 |
+
orange = '\033[33m'
|
314 |
+
blue = '\033[34m'
|
315 |
+
purple = '\033[35m'
|
316 |
+
cyan = '\033[36m'
|
317 |
+
lightgrey = '\033[37m'
|
318 |
+
darkgrey = '\033[90m'
|
319 |
+
lightred = '\033[91m'
|
320 |
+
lightgreen = '\033[92m'
|
321 |
+
yellow = '\033[93m'
|
322 |
+
lightblue = '\033[94m'
|
323 |
+
pink = '\033[95m'
|
324 |
+
lightcyan = '\033[96m'
|
325 |
+
|
326 |
+
class bg:
|
327 |
+
black = '\033[40m'
|
328 |
+
red = '\033[41m'
|
329 |
+
green = '\033[42m'
|
330 |
+
orange = '\033[43m'
|
331 |
+
blue = '\033[44m'
|
332 |
+
purple = '\033[45m'
|
333 |
+
cyan = '\033[46m'
|
334 |
+
lightgrey = '\033[47m'
|
335 |
+
|
336 |
+
|
337 |
+
def printc(text, color):
|
338 |
+
print(f"{color}{text}{colors.reset}")
|
339 |
+
|
340 |
+
############################################
|
341 |
+
|
342 |
+
def get_image_from_url(url):
|
343 |
+
response = requests.get(url)
|
344 |
+
img = Image.open(BytesIO(response.content)).convert("RGB")
|
345 |
+
return img
|
346 |
+
|
347 |
+
def url_to_torch(url, size=(384, 384)):
|
348 |
+
img = get_image_from_url(url)
|
349 |
+
img = img.resize(size, Image.ANTIALIAS)
|
350 |
+
img = torch.from_numpy(np.asarray(img)).float()
|
351 |
+
img = img.permute(2, 0, 1)
|
352 |
+
img.div_(255)
|
353 |
+
return img
|
354 |
+
|
355 |
+
def pil_to_batched_tensor(img):
|
356 |
+
return ToTensor()(img).unsqueeze(0)
|
357 |
+
|
358 |
+
def save_raw_16bit(depth, fpath="raw.png"):
|
359 |
+
if isinstance(depth, torch.Tensor):
|
360 |
+
depth = depth.squeeze().cpu().numpy()
|
361 |
+
|
362 |
+
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
|
363 |
+
assert depth.ndim == 2, "Depth must be 2D"
|
364 |
+
depth = depth * 256 # scale for 16-bit png
|
365 |
+
depth = depth.astype(np.uint16)
|
366 |
+
depth = Image.fromarray(depth)
|
367 |
+
depth.save(fpath)
|
368 |
+
print("Saved raw depth to", fpath)
|