Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
torch.jit.script = lambda f: f
|
3 |
from zoedepth.utils.misc import colorize, save_raw_16bit
|
4 |
from zoedepth.utils.geometry import depth_to_points, create_triangles
|
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
|
@@ -29,6 +30,9 @@ css = """
|
|
29 |
DEVICE = 'cuda'
|
30 |
model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to("cpu").eval()
|
31 |
|
|
|
|
|
|
|
32 |
# ----------- Depth functions
|
33 |
@spaces.GPU(enable_queue=True)
|
34 |
def save_raw_16bit(depth, fpath="raw.png"):
|
@@ -46,10 +50,18 @@ def process_image(image: Image.Image):
|
|
46 |
global model
|
47 |
image = image.convert("RGB")
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
processed_array = save_raw_16bit(colorize(out)[:, :, 0])
|
53 |
return Image.fromarray(processed_array)
|
54 |
|
55 |
# ----------- Depth functions
|
|
|
2 |
torch.jit.script = lambda f: f
|
3 |
from zoedepth.utils.misc import colorize, save_raw_16bit
|
4 |
from zoedepth.utils.geometry import depth_to_points, create_triangles
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
import gradio as gr
|
7 |
import spaces
|
8 |
|
|
|
30 |
DEVICE = 'cuda'
|
31 |
model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to("cpu").eval()
|
32 |
|
33 |
+
CHECKPOINT = "prs-eth/marigold-v1-0"
|
34 |
+
pipe = DiffusionPipeline.from_pretrained(CHECKPOINT)
|
35 |
+
|
36 |
# ----------- Depth functions
|
37 |
@spaces.GPU(enable_queue=True)
|
38 |
def save_raw_16bit(depth, fpath="raw.png"):
|
|
|
50 |
global model
|
51 |
image = image.convert("RGB")
|
52 |
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
# model.to(device)
|
55 |
+
# depth = model.infer_pil(image)
|
56 |
+
|
57 |
+
# processed_array = save_raw_16bit(colorize(depth)[:, :, 0])
|
58 |
+
# return Image.fromarray(processed_array)
|
59 |
+
|
60 |
+
model.to(device)
|
61 |
+
|
62 |
+
# # inference
|
63 |
+
processed_array = pipe(image)["depth"]
|
64 |
|
|
|
65 |
return Image.fromarray(processed_array)
|
66 |
|
67 |
# ----------- Depth functions
|