import torch torch.jit.script = lambda f: f import gradio as gr import spaces from zoedepth.utils.misc import colorize, save_raw_16bit from zoedepth.utils.geometry import depth_to_points, create_triangles from marigold_depth_estimation import MarigoldPipeline from PIL import Image import numpy as np import trimesh from functools import partial import tempfile css = """ img { max-height: 500px; object-fit: contain; } """ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval() CHECKPOINT = "prs-eth/marigold-v1-0" pipe = MarigoldPipeline.from_pretrained(CHECKPOINT) # ----------- Depth functions @spaces.GPU(enable_queue=True) def save_raw_16bit(depth, fpath="raw.png"): if isinstance(depth, torch.Tensor): depth = depth.squeeze().cpu().numpy() assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array" assert depth.ndim == 2, "Depth must be 2D" depth = depth * 256 # scale for 16-bit png depth = depth.astype(np.uint16) return depth @spaces.GPU(enable_queue=True) def process_image(image: Image.Image): global model image = image.convert("RGB") # model.to(DEVICE) depth = model.infer_pil(image) processed_array = save_raw_16bit(colorize(depth)[:, :, 0]) return Image.fromarray(processed_array) # model.to(device) # processed_array = pipe(image)["depth"] # return Image.fromarray(processed_array) # ----------- Depth functions # ----------- Mesh functions @spaces.GPU(enable_queue=True) def depth_edges_mask(depth): global model """Returns a mask of edges in the depth map. Args: depth: 2D numpy array of shape (H, W) with dtype float32. Returns: mask: 2D numpy array of shape (H, W) with dtype bool. """ # Compute the x and y gradients of the depth map. depth_dx, depth_dy = np.gradient(depth) # Compute the gradient magnitude. depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2) # Compute the edge mask. mask = depth_grad > 0.05 return mask @spaces.GPU(enable_queue=True) def predict_depth(image): global model device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) depth = model.infer_pil(image) return depth @spaces.GPU(enable_queue=True) def get_mesh(image: Image.Image, keep_edges=True): image.thumbnail((1024,1024)) # limit the size of the input image depth = predict_depth(image) pts3d = depth_to_points(depth[None]) pts3d = pts3d.reshape(-1, 3) # Create a trimesh mesh from the points # Each pixel is connected to its 4 neighbors # colors are the RGB values of the image verts = pts3d.reshape(-1, 3) image = np.array(image) if keep_edges: triangles = create_triangles(image.shape[0], image.shape[1]) else: triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth)) colors = image.reshape(-1, 3) mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors) # Save as glb glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) glb_path = glb_file.name mesh.export(glb_path) return glb_path # ----------- Mesh functions title = "# ZoeDepth" description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**.""" with gr.Blocks(css=css) as API: gr.Markdown(title) gr.Markdown(description) with gr.Tab("Depth Prediction"): with gr.Row(): inputs=gr.Image(label="Input Image", type='pil', height=500) # Input is an image outputs=gr.Image(label="Depth Map", type='pil', height=500) # Output is also an image generate_btn = gr.Button(value="Generate") # generate_btn.click(partial(process_image, model), inputs=inputs, outputs=outputs, api_name="generate_depth") generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth") with gr.Tab("Image to 3D"): with gr.Row(): with gr.Column(): inputs=[gr.Image(label="Input Image", type='pil', height=500), gr.Checkbox(label="Keep occlusion edges", value=True)] outputs=gr.Model3D(label="3D Mesh", clear_color=[1.0, 1.0, 1.0, 1.0], height=500) generate_btn = gr.Button(value="Generate") # generate_btn.click(partial(get_mesh, model), inputs=inputs, outputs=outputs, api_name="generate_mesh") generate_btn.click(get_mesh, inputs=inputs, outputs=outputs, api_name="generate_mesh") if __name__ == '__main__': API.launch()